This is a merge including Wiedervereinigung. Scores even better in the benchmarks, however the license is a bit less free since it includes one of mlabonnes famous models.
79 Pulls Updated 7 months ago
Updated 7 months ago
7 months ago
89c26bf5c90c · 4.1GB
model
archllama
·
parameters7.24B
·
quantizationQ4_0
4.1GB
license
Apache 2
10B
system
Du bist ein hilfreicher Assistent. Gebe kurze und präzise Antworten.
69B
params
{"num_ctx":16384,"stop":["\u003c|im_end|\u003e","\u003c/s\u003e","\u003c|im_start|\u003e"],"temperat
108B
template
{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|im_start|>user
156B
Readme
Wiederchat-7b-dpo-laser
Wiederchat-7b-dpo is a laser-qlorad dpo-aligned merge of the following models using LazyMergekit: * mlabonne/OmniTruthyBeagle-7B-v0 * mayflowergmbh/Wiedervereinigung-7b-dpo-laser * cognitivecomputations/openchat-3.5-0106-laser
🧩 Configuration
models:
- model: mistralai/Mistral-7B-v0.1
# no parameters necessary for base model
- model: mlabonne/OmniTruthyBeagle-7B-v0
parameters:
density: 0.60
weight: 0.30
- model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
parameters:
density: 0.65
weight: 0.40
- model: cognitivecomputations/openchat-3.5-0106-laser
parameters:
density: 0.6
weight: 0.3
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
📈 Mt-Bench-De
{
"first_turn": 7.8875,
"second_turn": 7.31875,
"categories": {
"writing": 8.65,
"roleplay": 8.225,
"reasoning": 6.5,
"math": 4.55,
"coding": 6.1,
"extraction": 8.25,
"stem": 9.2,
"humanities": 9.35
},
"average": 7.603125
}
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "johannhartmann/Wiederchat-7b-dpo-laser"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])