This is a merge including Wiedervereinigung. Scores even better in the benchmarks, however the license is a bit less free since it includes one of mlabonnes famous models.

79 7 months ago

Readme

Wiederchat-7b-dpo-laser

Wiederchat-7b-dpo is a laser-qlorad dpo-aligned merge of the following models using LazyMergekit: * mlabonne/OmniTruthyBeagle-7B-v0 * mayflowergmbh/Wiedervereinigung-7b-dpo-laser * cognitivecomputations/openchat-3.5-0106-laser

🧩 Configuration

models:
  - model: mistralai/Mistral-7B-v0.1
    # no parameters necessary for base model
  - model: mlabonne/OmniTruthyBeagle-7B-v0
    parameters:
      density: 0.60
      weight: 0.30
  - model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
    parameters:
      density: 0.65
      weight: 0.40
  - model: cognitivecomputations/openchat-3.5-0106-laser
    parameters:
      density: 0.6
      weight: 0.3
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
  int8_mask: true
dtype: bfloat16
random_seed: 0

📈 Mt-Bench-De

{
    "first_turn": 7.8875,
    "second_turn": 7.31875,
    "categories": {
        "writing": 8.65,
        "roleplay": 8.225,
        "reasoning": 6.5,
        "math": 4.55,
        "coding": 6.1,
        "extraction": 8.25,
        "stem": 9.2,
        "humanities": 9.35
    },
    "average": 7.603125
}

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "johannhartmann/Wiederchat-7b-dpo-laser"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])