Built upon the powerful LLaMa-3 architecture and fine-tuned on an extensive dataset of health information, this model leverages its vast medical knowledge to offer clear, comprehensive answers.

8b

1,135 5 months ago

Readme

Based on Medichat-Llama3-8B. It is quantized to q4_K_M for a balance between memory usage and output quality.

Medichat-Llama3-8B

Built upon the powerful LLaMa-3 architecture and fine-tuned on an extensive dataset of health information, this model leverages its vast medical knowledge to offer clear, comprehensive answers.

The following YAML configuration was used to produce this model:


models:
  - model: Undi95/Llama-3-Unholy-8B
    parameters:
      weight: [0.25, 0.35, 0.45, 0.35, 0.25]
      density: [0.1, 0.25, 0.5, 0.25, 0.1]
  - model: Locutusque/llama-3-neural-chat-v1-8b
  - model: ruslanmv/Medical-Llama3-8B-16bit
    parameters:
      weight: [0.55, 0.45, 0.35, 0.45, 0.55]
      density: [0.1, 0.25, 0.5, 0.25, 0.1]
merge_method: dare_ties
base_model: Locutusque/llama-3-neural-chat-v1-8b
parameters:
  int8_mask: true
dtype: bfloat16

Comparision Against Dr.Samantha 7B

Subject Medichat-Llama3-8B Accuracy (%) Dr. Samantha Accuracy (%)
Clinical Knowledge 71.70 52.83
Medical Genetics 78.00 49.00
Human Aging 70.40 58.29
Human Sexuality 73.28 55.73
College Medicine 62.43 38.73
Anatomy 64.44 41.48
College Biology 72.22 52.08
High School Biology 77.10 53.23
Professional Medicine 63.97 38.73
Nutrition 73.86 50.33
Professional Psychology 68.95 46.57
Virology 54.22 41.57
High School Psychology 83.67 66.60
Average 70.33 48.85

The current model demonstrates a substantial improvement over the previous Dr. Samantha model in terms of subject-specific knowledge and accuracy.

Usage:

from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("sethuiyer/Medichat-Llama3-8B")
model = AutoModelForCausalLM.from_pretrained("sethuiyer/Medichat-Llama3-8B").to("cuda")

# Function to format and generate response with prompt engineering using a chat template
def askme(question):
    sys_message = ''' 
    You are an AI Medical Assistant trained on a vast dataset of health information. Please be thorough and
    provide an informative answer. If you don't know the answer to a specific medical inquiry, advise seeking professional help.
    '''

    # Create messages structured for the chat template
    messages = [{"role": "system", "content": sys_message}, {"role": "user", "content": question}]

    # Applying chat template
    prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
    outputs = model.generate(**inputs, max_new_tokens=512, use_cache=True)  # Adjust max_new_tokens for longer responses

    # Extract and return the generated text
    answer = tokenizer.batch_decode(outputs)[0].strip()
    return answer

## Example usage
question = '''
Symptoms:
Dizziness, headache and nausea.

What is the differnetial diagnosis?
'''
print(askme(question))