80 1 month ago

A specialized AI model fine-tuned for expertise in Large Language Models (LLMs), Retrieval-Augmented Generation (RAG), and AI Agents.

Models

View all →

Readme

Qwen3-14B-AI-Expert-250819

A specialized AI model fine-tuned for expertise in Large Language Models (LLMs), Retrieval-Augmented Generation (RAG), and AI Agents.

Quick Start

Pull the model

ollama pull jiakai/qwen3-14b-ai-expert-250819

Run the model

ollama run jiakai/qwen3-14b-ai-expert-250819

Chat with the model

ollama run jiakai/qwen3-14b-ai-expert-250819 "What is the difference between RAG and fine-tuning?"

Usage Examples

Basic Chat

ollama run jiakai/qwen3-14b-ai-expert-250819
>>> What is the MCP Protocol?
>>> How do AI agents work with tool calling?
>>> Explain the concept of retrieval-augmented generation

API Usage

curl http://localhost:11434/api/generate -d '{
  "model": "jiakai/qwen3-14b-ai-expert-250819",
  "prompt": "Explain the architecture of transformer models",
  "stream": false
}'

Python Integration

import requests
import json

def chat_with_model(prompt):
    response = requests.post('http://localhost:11434/api/generate',
                           json={
                               'model': 'jiakai/qwen3-14b-ai-expert-250819',
                               'prompt': prompt,
                               'stream': False
                           })
    return json.loads(response.text)['response']

# Example usage
result = chat_with_model("What are the key components of a RAG system?")
print(result)

Model Specifications

  • Base Model: Qwen/Qwen3-14B
  • Fine-tuning Method: LoRA (Low-Rank Adaptation)
  • Specialization: AI Core Technologies (LLMs, RAG, AI Agents)
  • License: Apache 2.0
  • Developer: real-jiakai

Specialized Domains

This model excels in providing detailed, accurate responses about:

๐Ÿค– Large Language Models (LLMs)

  • Model architectures and training techniques
  • Prompt engineering and optimization
  • Performance evaluation and benchmarking
  • Fine-tuning strategies and best practices

๐Ÿ” Retrieval-Augmented Generation (RAG)

  • RAG system design and implementation
  • Vector databases and embedding strategies
  • Retrieval techniques and optimization
  • Hybrid search approaches

๐Ÿ› ๏ธ AI Agents

  • Agent architectures and frameworks
  • Tool integration and function calling
  • Multi-agent systems and coordination
  • Planning and reasoning mechanisms

Links

Training Details

  • Dataset: 3,120 high-quality Alpaca-format items
    • LLM: 1,478 pairs
    • RAG: 1,178 pairs
    • AI Agents: 464 pairs
  • Fine-tuning Framework: LlaMA-Factory
  • Training Logs: Weights & Biases

Citation

@misc{Qwen3-14B-AI-Expert-250819,
  author = {real-jiakai},
  title = {Qwen3-14B-AI-Expert-250819},
  year = 2025,
  url = {https://huggingface.co/GXMZU/Qwen3-14B-ai-expert-250819},
  publisher = {Hugging Face}
}