138 yesterday

This model was base on unsloth/GLM-4.7-Flash and trained on a small reasoning dataset of Claude Opus 4.5, with reasoning effort set to High.

tools thinking
ollama run SimonPu/GLM-4.7-Flash

Applications

Claude Code
Claude Code ollama launch claude --model SimonPu/GLM-4.7-Flash
Codex
Codex ollama launch codex --model SimonPu/GLM-4.7-Flash
OpenCode
OpenCode ollama launch opencode --model SimonPu/GLM-4.7-Flash
OpenClaw
OpenClaw ollama launch openclaw --model SimonPu/GLM-4.7-Flash

Models

View all →

Readme

GLM-4.7-Flash

👋 Join our Discord community.
📖 Check out the GLM-4.7 technical blog, technical report(GLM-4.5).
📍 Use GLM-4.7-Flash API services on Z.ai API Platform.
👉 One click to GLM-4.7.

Introduction

GLM-4.7-Flash is a 30B-A3B MoE model. As the strongest model in the 30B class, GLM-4.7-Flash offers a new option for lightweight deployment that balances performance and efficiency.

Default Settings (Most Tasks) from Run GLM-4.7-Flash Guide!

  • temperature: 1.0
  • top-p: 0.95
  • min-p: 0.01
  • repeat-penalty: 1.0

Benchmarks

Citation

If you find our work useful in your research, please consider citing the following paper:


@misc{5team2025glm45agenticreasoningcoding,
      title={GLM-4.5: Agentic, Reasoning, and Coding (ARC) Foundation Models}, 
      author={GLM Team and Aohan Zeng and Xin Lv and others},
      year={2025},
      eprint={2508.06471},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2508.06471}, 
}