98 Downloads Updated 3 months ago
ollama run SVECTOR_/Continue-1-OSS
ollama launch claude --model SVECTOR_/Continue-1-OSS
ollama launch codex --model SVECTOR_/Continue-1-OSS
ollama launch opencode --model SVECTOR_/Continue-1-OSS
ollama launch openclaw --model SVECTOR_/Continue-1-OSS
We are thrilled to introduce Continue-1-OSS, an advanced text generation model developed by SVECTOR, built on the Continue-1 architecture optimized for high-quality text generation, instruction following, and long-context understanding.
Continue-1-OSS is engineered to provide:
This model combines the power of transformer architecture with advanced training techniques to deliver exceptional performance across a wide range of natural language tasks.
To use Continue-1-OSS, install the required dependencies:
pip install transformers torch
pip install vllm # For fast inference (optional but recommended)
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "SVECTOR-CORPORATION/Continue-1-OSS"
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Prepare conversation
messages = [
{"role": "user", "content": "What is machine learning?"}
]
# Apply chat template and generate
input_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
For high-performance inference with faster generation:
pip install vllm
from vllm import LLM, SamplingParams
# Initialize model
llm = LLM(
model="SVECTOR-CORPORATION/Continue-1-OSS",
trust_remote_code=True,
max_model_len=8192
)
# Set sampling parameters
sampling_params = SamplingParams(
temperature=0.7,
top_p=0.9,
max_tokens=512
)
# Generate
messages = [
{"role": "user", "content": "Explain quantum computing in simple terms."}
]
outputs = llm.chat(messages, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
Default System Prompt: “You are Continue-1-OSS, an advanced AI assistant developed by SVECTOR. You are designed to be helpful, harmless, and honest.”
messages = [
{"role": "system", "content": "You are Continue-1-OSS, a helpful AI assistant."},
{"role": "user", "content": "What is quantum computing?"},
{"role": "assistant", "content": "Quantum computing is a type of computing that uses quantum mechanics principles..."},
{"role": "user", "content": "Can you explain that more simply?"}
]
Continue-1-OSS supports function calling for tool integration:
messages = [
{"role": "user", "content": "What's the weather in San Francisco?"}
]
# Model can generate JSON function calls
# Example output: {"name": "get_weather", "parameters": {"location": "Ahmedabad"}}
Continue-1-OSS excels at:
Continue-1-OSS uses a custom architecture based on the transformer decoder:
Continue1ForCausalLMContinue1ConfigThe model uses RoPE (Rotary Position Embeddings) for positional encoding and supports extended context through position interpolation.
Continue-1-OSS was developed using: - High-quality instruction datasets covering diverse tasks - Conversational and reasoning data for improved dialogue - Code and technical content for developer assistance - Multi-turn dialogue for contextual understanding
Training utilized: - Advanced optimization techniques - Careful hyperparameter tuning - Quality filtering and data curation - Evaluation on diverse benchmarks
As with any language model, Continue-1-OSS has certain limitations:
SVECTOR is committed to responsible AI development. Users should:
Temperature Settings:
Context Management:
Batch Processing:
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
import torch
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(
"SVECTOR-CORPORATION/Continue-1-OSS",
trust_remote_code=True,
quantization_config=quantization_config,
device_map="auto"
)
Developed by SVECTOR