155 3 months ago

ollama run KaLM-Embedding/KaLM-Embedding-Gemma3-12B-2511

Models

View all →

Readme

KaLM-Embedding-Gemma3-12B-2511

Homepage

Short Description

KaLM-Embedding-Gemma3-12B-2511 is a versatile and compact embedding model, which achieves SOTA performance in MMTEB (due to 11-2025).

MMTEB Evaluation Results

Rank (Borda) Model Mean (Task) Mean (TaskType) Bitext Mining Classification Clustering Instruction Reranking Multilabel Classification Pair Classification Reranking Retrieval STS
1 KaLM-Embedding-Gemma3-12B-2511 72.32 62.51 83.76 77.88 55.77 5.49 33.03 84.73 67.27 75.66 79.02
2 llama-embed-nemotron-8b 69.46 61.09 81.72 73.21 54.35 10.82 29.86 83.97 67.78 68.69 79.41
3 Qwen3-Embedding-8B 70.58 61.69 80.89 74.00 57.65 10.06 28.66 86.40 65.63 70.88 81.08
4 gemini-embedding-001 68.37 59.59 79.28 71.82 54.59 5.18 29.16 83.63 65.58 67.71 79.40
5 Qwen3-Embedding-4B 69.45 60.86 79.36 72.33 57.15 11.56 26.77 85.05 65.08 69.60 80.86
6 Qwen3-Embedding-0.6B 64.34 56.01 72.23 66.83 52.33 5.09 24.59 80.83 61.41 64.65 76.17
7 gte-Qwen2-7B-instruct 62.51 55.93 73.92 61.55 52.77 4.94 25.48 85.13 65.55 60.08 73.98
8 Linq-Embed-Mistral 61.47 54.14 70.34 62.24 50.60 0.94 24.77 80.43 64.37 58.69 74.86
9 multilingual-e5-large-instruct 63.22 55.08 80.13 64.94 50.75 -0.40 22.91 80.86 62.61 57.12 76.81
10 embeddinggemma-300m 61.15 54.31 64.40 60.90 51.17 5.61 24.82 81.40 63.25 62.49 74.73

Model Details

  • Model Size: 11.76B
  • Embedding Dimension: 3840
  • Max Input Tokens: 32k
  • MRL dimensions: 3840, 2048, 1024, 512, 256, 128, and 64
  • Pooling: lasttoken pooling

Citation

If you find this model useful, please consider giving a star and citation.

@misc{zhao2025kalmembeddingv2,
      title={KaLM-Embedding-V2: Superior Training Techniques and Data Inspire A Versatile Embedding Model}, 
      author={Xinping Zhao and Xinshuo Hu and Zifei Shan and Shouzheng Huang and Yao Zhou and Xin Zhang and Zetian Sun and Zhenyu Liu and Dongfang Li and Xinyuan Wei and Youcheng Pan and Yang Xiang and Meishan Zhang and Haofen Wang and Jun Yu and Baotian Hu and Min Zhang},
      year={2025},
      eprint={2506.20923},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2506.20923}, 
}
@misc{hu2025kalmembedding,
      title={KaLM-Embedding: Superior Training Data Brings A Stronger Embedding Model}, 
      author={Xinshuo Hu and Zifei Shan and Xinping Zhao and Zetian Sun and Zhenyu Liu and Dongfang Li and Shaolin Ye and Xinyuan Wei and Qian Chen and Baotian Hu and Haofen Wang and Jun Yu and Min Zhang},
      year={2025},
      eprint={2501.01028},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2501.01028}, 
}

Contact

If you encounter any issue, feel free to contact us via the email: yanshek.woo@gmail.com, xinpingzhao@slai.edu.cn