170 Downloads Updated 7 months ago
HuggingFace Jina AI ReaderLM-v2
Trained by Jina AI.
Blog | API | Colab | AWS | Azure| [Arxiv (soon!)]
ReaderLM-v2
is a 1.5B parameter language model that converts raw HTML into beautifully formatted markdown or JSON with superior accuracy and improved longer context handling. Supporting multiple languages (29 in total), ReaderLM-v2
is specialized for tasks involving HTML parsing, transformation, and text extraction.
ReaderLM-v2
ReaderLM-v2
represents a significant leap forward from its predecessor, with several key improvements:
Below, you will find instructions and examples for using ReaderLM-v2
locally using the Hugging Face Transformers library.
For a more hands-on experience in a hosted environment, see the Google Colab Notebook.
ReaderLM-v2
is now fully integrated with Reader API. To use it, simply specify x-engine: readerlm-v2
in your request headers and enable response streaming with -H 'Accept: text/event-stream'
:
curl https://r.jina.ai/https://news.ycombinator.com/ -H 'x-engine: readerlm-v2' -H 'Accept: text/event-stream'
You can try it without an API key at a lower rate limit. For higher rate limits, you can purchase an API key. Please note that ReaderLM-v2 requests consume 3x the normal token count from your API key allocation. This is currently an experimental feature, and we’re working with the GCP team to improve GPU efficiency.
You can try ReaderLM-v2
via our Colab notebook, which demonstrates HTML-to-markdown conversion, JSON extraction, and instruction-following using the HackerNews frontpage as an example. The notebook is optimized for Colab’s free T4 GPU tier and requires vllm
and triton
for acceleration and running.
Note that the free T4 GPU has limitations—it doesn’t support bfloat16 or flash attention 2, leading to higher memory usage and slower processing of longer inputs. Nevertheless, ReaderLM-v2 successfully processes large documents under these constraints, achieving processing speeds of 67 tokens/s input and 36 tokens/s output. For production use, we recommend an RTX 3090⁄4090 for optimal performance.
To use ReaderLM-v2
locally:
pip install transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # or "cpu"
tokenizer = AutoTokenizer.from_pretrained("jinaai/ReaderLM-v2")
model = AutoModelForCausalLM.from_pretrained("jinaai/ReaderLM-v2").to(device)
import re
# Patterns
SCRIPT_PATTERN = r"<[ ]*script.*?\/[ ]*script[ ]*>"
STYLE_PATTERN = r"<[ ]*style.*?\/[ ]*style[ ]*>"
META_PATTERN = r"<[ ]*meta.*?>"
COMMENT_PATTERN = r"<[ ]*!--.*?--[ ]*>"
LINK_PATTERN = r"<[ ]*link.*?>"
BASE64_IMG_PATTERN = r'<img[^>]+src="data:image/[^;]+;base64,[^"]+"[^>]*>'
SVG_PATTERN = r"(<svg[^>]*>)(.*?)(<\/svg>)"
def replace_svg(html: str, new_content: str = "this is a placeholder") -> str:
return re.sub(
SVG_PATTERN,
lambda match: f"{match.group(1)}{new_content}{match.group(3)}",
html,
flags=re.DOTALL,
)
def replace_base64_images(html: str, new_image_src: str = "#") -> str:
return re.sub(BASE64_IMG_PATTERN, f'<img src="{new_image_src}"/>', html)
def clean_html(html: str, clean_svg: bool = False, clean_base64: bool = False):
html = re.sub(
SCRIPT_PATTERN, "", html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL
)
html = re.sub(
STYLE_PATTERN, "", html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL
)
html = re.sub(
META_PATTERN, "", html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL
)
html = re.sub(
COMMENT_PATTERN, "", html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL
)
html = re.sub(
LINK_PATTERN, "", html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL
)
if clean_svg:
html = replace_svg(html)
if clean_base64:
html = replace_base64_images(html)
return html
def create_prompt(
text: str, tokenizer=None, instruction: str = None, schema: str = None
) -> str:
"""
Create a prompt for the model with optional instruction and JSON schema.
"""
if not instruction:
instruction = "Extract the main content from the given HTML and convert it to Markdown format."
if schema:
instruction = "Extract the specified information from a list of news threads and present it in a structured JSON format."
prompt = f"{instruction}\n```html\n{text}\n```\nThe JSON schema is as follows:```json\n{schema}\n```"
else:
prompt = f"{instruction}\n```html\n{text}\n```"
messages = [
{
"role": "user",
"content": prompt,
}
]
return tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
html = "<html><body><h1>Hello, world!</h1></body></html>"
html = clean_html(html)
input_prompt = create_prompt(html, tokenizer=tokenizer)
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device)
outputs = model.generate(
inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08
)
print(tokenizer.decode(outputs[0]))
schema = """
{
"type": "object",
"properties": {
"title": {
"type": "string"
},
"author": {
"type": "string"
},
"date": {
"type": "string"
},
"content": {
"type": "string"
}
},
"required": ["title", "author", "date", "content"]
}
"""
html = clean_html(html)
input_prompt = create_prompt(html, tokenizer=tokenizer, schema=schema)
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device)
outputs = model.generate(
inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08
)
print(tokenizer.decode(outputs[0]))
ReaderLM-v2 has been extensively evaluated on various tasks:
For HTML-to-Markdown tasks, the model outperforms much larger models like Qwen2.5-32B-Instruct and Gemini2-flash-expr, achieving: - ROUGE-L: 0.84 - Levenshtein Distance: 0.22 - Jaro-Winkler Similarity: 0.82
For HTML-to-JSON tasks, it shows competitive performance with: - F1 Score: 0.81 - Precision: 0.82 - Recall: 0.81 - Pass-Rate: 0.98
The model excels in three key dimensions: - Content Integrity: 39⁄50 - Structural Accuracy: 35⁄50 - Format Compliance: 36⁄50
These scores demonstrate strong performance in preserving semantic information, maintaining structural accuracy, and adhering to markdown syntax standards.
ReaderLM-v2 is built on Qwen2.5-1.5B-Instruction and trained using a sophisticated pipeline:
Data Preparation: Created html-markdown-1m dataset with 1 million HTML documents
Synthetic Data Generation: Three-step pipeline using Qwen2.5-32B-Instruction
Training Process: