68 Downloads Updated 6 months ago
RAEGEN represents the next generation of artificially intelligent engines, built on principles of recursive learning and adaptive intelligence for enterprise-grade deployment. It is designed to evolve with its users, supporting dynamic adaptation and continuous improvement.
RAEGEN is engineered to serve as an advanced AI assistant, capable of learning, adapting, and scaling alongside organizational needs. Working with this engine is easy, just hook it up to your chain or graph and fire it up. Raegen is preconfigured to optimize given any environment.
Input Data → Handler Functions → Model Processing → Embedding Generation → Fusion Layer → Output
The simplest way to get started is with Ollama. ollama pull Artifact_Virtual/RAEGEN ollama run Artifact_Virtual/RAEGEN
Or you can follow the guide below. But please be informed, this is still open source and under heavy development. Though the system is fully operational, you may experience timely breaks and incompatibilities. Rest assured we are working tirelessly in bringing the future closer even closer to us.
# Core ML Libraries
transformers
datasets
torch
torchaudio
torchvision
# Audio Processing
pyaudio
wave
speechrecognition
ffmpeg-python
# Image Processing
opencv-python
PIL
# Document Processing
PyMuPDF
unstructured
# NLP & RAG
langchain
langchain-community
sentence-transformers
faiss-cpu
# Language Detection
polyglot
pyicu
pycld2
morfessor
# Enterprise Features
admin-tools
openai
qwen
# Utilities
matplotlib
tqdm
git clone https://github.com/amuzetnoM/artifactvirtual.git
cd artifactvirtual
pip install -r requirements.txt
# Additional installations for full functionality
pip install transformers datasets torchaudio torchvision matplotlib sentence-transformers
pip install pyaudio wave speechrecognition PyMuPDF opencv-python ffmpeg-python
pip install langchain qwen openai faiss-cpu unstructured langchain-community
pip install tqdm polyglot pyicu pycld2 morfessor admin-tools
python -m venv raegen_env
source raegen_env/bin/activate # On Windows: raegen_env\Scripts\activate
pip install -e .
from raegen import RAEGEN
raegen = RAEGEN()
result = raegen.handle_text("Hello, world!")
print(result)
text_result = raegen.handle_text("Analyze this image")
image_result = raegen.handle_image("path/to/image.jpg")
audio_result = raegen.handle_audio("path/to/audio.wav")
combined = raegen.fuse_embeddings(text_result, image_result, audio_result)
from raegen.enterprise import WorkflowEngine
workflow = WorkflowEngine()
workflow.add_node('data_validation')
workflow.add_node('processing')
workflow.add_node('notification')
result = workflow.execute(input_data)
raegen/handlers/)raegen/models/)raegen/rag/)raegen/enterprise/)raegen/hidb/)# config/model_config.py
MODEL_CONFIG = {
'qwen_model': "Qwen/Qwen3",
'bert_model': "bert-base-uncased",
'embedding_model': "sentence-transformers/all-MiniLM-L6-v2",
'device_map': "auto",
'load_in_4bit': True
}
# config/enterprise_config.py
ENTERPRISE_CONFIG = {
'admin_access': True,
'audit_logging': True,
'workflow_engine': True,
'multilingual_support': True,
'security_level': 'ADMIN'
}
from raegen.rag import setup_rag
rag_system = setup_rag("documents/knowledge_base.pdf")
response = rag_system.query("What are the key features of RAEGEN?")
print(response)
from raegen.language import LanguageDetector
detector = LanguageDetector()
text = "Bonjour, comment allez-vous?"
language = detector.detect(text)
processed = raegen.process_multilingual(text, language)
from raegen.enterprise import create_workflow
workflow = create_workflow()
workflow.add_validation_step()
workflow.add_processing_step()
workflow.add_notification_step()
result = workflow.execute_with_monitoring(data)
RAEGENMain class for interacting with the RAEGEN system.
Methods:
- handle_text(text: str) -> TokenizedOutput
- handle_image(image_path: str) -> TensorOutput
- handle_audio(audio_path: str) -> WaveformOutput
- chat(prompt: str) -> str
- fuse_embeddings(*embeddings) -> CombinedVector
WorkflowEngineEnterprise workflow automation engine.
Methods:
- add_node(name: str, config: dict)
- add_edge(from_node: str, to_node: str)
- execute(data: Any) -> WorkflowResult
- visualize() -> GraphVisualization
HiDBHybrid serverless database interface.
Methods:
- store_dataset(name: str, data: Any)
- get_dataset(name: str) -> Dataset
- query(table: str, query: dict) -> QueryResult
python -m pytest tests/
python -m pytest tests/test_handlers.py
python -m pytest tests/test_models.py
python -m pytest tests/test_enterprise.py
python scripts/benchmark.py
python scripts/memory_profile.py
Contributions are welcome. Please refer to the Contributing Guidelines for details.
This project is licensed under the MIT License. See the LICENSE file for details.
raegenFor enterprise support and custom implementations: - Email: enterprise@raegen.ai - Phone: +1-555-RAEGEN - Slack: Enterprise customer channel
RAEGEN is designed to advance the boundaries of artificial intelligence for enterprise and research applications.
Developed by the Artifact Virtual Team