Models
GitHub
Discord
Turbo
Sign in
Download
Models
Download
GitHub
Discord
Sign in
mapler
/
lite-mistral-150m-instruct
:latest
227
Downloads
Updated
1 year ago
This is a Lite series model based on the Mistral architecture, comprising approximately 157 million parameters.
This is a Lite series model based on the Mistral architecture, comprising approximately 157 million parameters.
Cancel
lite-mistral-150m-instruct:latest
...
/
model
0fd75f692a01 · 167MB
Metadata
general.architecture
llama
llama
general.file_type
Q8_0
Q8_0
llama.attention.head_count
16
16
llama.attention.head_count_kv
8
8
llama.attention.layer_norm_rms_epsilon
1e-06
1e-06
llama.block_count
12
12
llama.context_length
2048
2048
llama.embedding_length
768
768
llama.feed_forward_length
3072
3072
llama.rope.dimension_count
48
48
llama.rope.freq_base
10000
10000
llama.vocab_size
32768
32768
tokenizer.ggml.add_bos_token
true
true
tokenizer.ggml.add_eos_token
false
false
tokenizer.ggml.bos_token_id
1
1
tokenizer.ggml.eos_token_id
2
2
tokenizer.ggml.model
llama
llama
tokenizer.ggml.pre
default
default
tokenizer.ggml.scores
[0, 0, 0, 0, 0, ...]
[0, 0, 0, 0, 0, ...]
tokenizer.ggml.token_type
[2, 3, 3, 6, 6, ...]
[2, 3, 3, 6, 6, ...]
tokenizer.ggml.tokens
[<unk>, <s>, </s>, <0x00>, <0x01>, ...]
[<unk>, <s>, </s>, <0x00>, <0x01>, ...]
tokenizer.ggml.unknown_token_id
0
0
Tensor
Name
Type
Shape
token_embd.weight
Q8_0
Q8_0
[768, 32768]
blk.0
blk.0.attn_k.weight
Q8_0
Q8_0
[768, 384]
blk.0.attn_norm.weight
F32
F32
[768]
blk.0.attn_output.weight
Q8_0
Q8_0
[768, 768]
blk.0.attn_q.weight
Q8_0
Q8_0
[768, 768]
blk.0.attn_v.weight
Q8_0
Q8_0
[768, 384]
blk.0.ffn_down.weight
Q8_0
Q8_0
[3072, 768]
blk.0.ffn_gate.weight
Q8_0
Q8_0
[768, 3072]
blk.0.ffn_norm.weight
F32
F32
[768]
blk.0.ffn_up.weight
Q8_0
Q8_0
[768, 3072]
blk.1
blk.1.attn_k.weight
Q8_0
Q8_0
[768, 384]
blk.1.attn_norm.weight
F32
F32
[768]
blk.1.attn_output.weight
Q8_0
Q8_0
[768, 768]
blk.1.attn_q.weight
Q8_0
Q8_0
[768, 768]
blk.1.attn_v.weight
Q8_0
Q8_0
[768, 384]
blk.1.ffn_down.weight
Q8_0
Q8_0
[3072, 768]
blk.1.ffn_gate.weight
Q8_0
Q8_0
[768, 3072]
blk.1.ffn_norm.weight
F32
F32
[768]
blk.1.ffn_up.weight
Q8_0
Q8_0
[768, 3072]
blk.2
blk.2.attn_k.weight
Q8_0
Q8_0
[768, 384]
blk.2.attn_norm.weight
F32
F32
[768]
blk.2.attn_output.weight
Q8_0
Q8_0
[768, 768]
blk.2.attn_q.weight
Q8_0
Q8_0
[768, 768]
blk.2.attn_v.weight
Q8_0
Q8_0
[768, 384]
blk.2.ffn_down.weight
Q8_0
Q8_0
[3072, 768]
blk.2.ffn_gate.weight
Q8_0
Q8_0
[768, 3072]
blk.2.ffn_norm.weight
F32
F32
[768]
blk.2.ffn_up.weight
Q8_0
Q8_0
[768, 3072]
blk.3
blk.3.attn_k.weight
Q8_0
Q8_0
[768, 384]
blk.3.attn_norm.weight
F32
F32
[768]
blk.3.attn_output.weight
Q8_0
Q8_0
[768, 768]
blk.3.attn_q.weight
Q8_0
Q8_0
[768, 768]
blk.3.attn_v.weight
Q8_0
Q8_0
[768, 384]
blk.3.ffn_down.weight
Q8_0
Q8_0
[3072, 768]
blk.3.ffn_gate.weight
Q8_0
Q8_0
[768, 3072]
blk.3.ffn_norm.weight
F32
F32
[768]
blk.3.ffn_up.weight
Q8_0
Q8_0
[768, 3072]
blk.4
blk.4.attn_k.weight
Q8_0
Q8_0
[768, 384]
blk.4.attn_norm.weight
F32
F32
[768]
blk.4.attn_output.weight
Q8_0
Q8_0
[768, 768]
blk.4.attn_q.weight
Q8_0
Q8_0
[768, 768]
blk.4.attn_v.weight
Q8_0
Q8_0
[768, 384]
blk.4.ffn_down.weight
Q8_0
Q8_0
[3072, 768]
blk.4.ffn_gate.weight
Q8_0
Q8_0
[768, 3072]
blk.4.ffn_norm.weight
F32
F32
[768]
blk.4.ffn_up.weight
Q8_0
Q8_0
[768, 3072]
blk.5
blk.5.attn_k.weight
Q8_0
Q8_0
[768, 384]
blk.5.attn_norm.weight
F32
F32
[768]
blk.5.attn_output.weight
Q8_0
Q8_0
[768, 768]
blk.5.attn_q.weight
Q8_0
Q8_0
[768, 768]
blk.5.attn_v.weight
Q8_0
Q8_0
[768, 384]
blk.5.ffn_down.weight
Q8_0
Q8_0
[3072, 768]
blk.5.ffn_gate.weight
Q8_0
Q8_0
[768, 3072]
blk.5.ffn_norm.weight
F32
F32
[768]
blk.5.ffn_up.weight
Q8_0
Q8_0
[768, 3072]
blk.6
blk.6.attn_k.weight
Q8_0
Q8_0
[768, 384]
blk.6.attn_norm.weight
F32
F32
[768]
blk.6.attn_output.weight
Q8_0
Q8_0
[768, 768]
blk.6.attn_q.weight
Q8_0
Q8_0
[768, 768]
blk.6.attn_v.weight
Q8_0
Q8_0
[768, 384]
blk.6.ffn_down.weight
Q8_0
Q8_0
[3072, 768]
blk.6.ffn_gate.weight
Q8_0
Q8_0
[768, 3072]
blk.6.ffn_norm.weight
F32
F32
[768]
blk.6.ffn_up.weight
Q8_0
Q8_0
[768, 3072]
blk.7
blk.7.attn_k.weight
Q8_0
Q8_0
[768, 384]
blk.7.attn_norm.weight
F32
F32
[768]
blk.7.attn_output.weight
Q8_0
Q8_0
[768, 768]
blk.7.attn_q.weight
Q8_0
Q8_0
[768, 768]
blk.7.attn_v.weight
Q8_0
Q8_0
[768, 384]
blk.7.ffn_down.weight
Q8_0
Q8_0
[3072, 768]
blk.7.ffn_gate.weight
Q8_0
Q8_0
[768, 3072]
blk.7.ffn_norm.weight
F32
F32
[768]
blk.7.ffn_up.weight
Q8_0
Q8_0
[768, 3072]
blk.8
blk.8.attn_k.weight
Q8_0
Q8_0
[768, 384]
blk.8.attn_norm.weight
F32
F32
[768]
blk.8.attn_output.weight
Q8_0
Q8_0
[768, 768]
blk.8.attn_q.weight
Q8_0
Q8_0
[768, 768]
blk.8.attn_v.weight
Q8_0
Q8_0
[768, 384]
blk.8.ffn_down.weight
Q8_0
Q8_0
[3072, 768]
blk.8.ffn_gate.weight
Q8_0
Q8_0
[768, 3072]
blk.8.ffn_norm.weight
F32
F32
[768]
blk.8.ffn_up.weight
Q8_0
Q8_0
[768, 3072]
blk.9
blk.9.attn_k.weight
Q8_0
Q8_0
[768, 384]
blk.9.attn_norm.weight
F32
F32
[768]
blk.9.attn_output.weight
Q8_0
Q8_0
[768, 768]
blk.9.attn_q.weight
Q8_0
Q8_0
[768, 768]
blk.9.attn_v.weight
Q8_0
Q8_0
[768, 384]
blk.9.ffn_down.weight
Q8_0
Q8_0
[3072, 768]
blk.9.ffn_gate.weight
Q8_0
Q8_0
[768, 3072]
blk.9.ffn_norm.weight
F32
F32
[768]
blk.9.ffn_up.weight
Q8_0
Q8_0
[768, 3072]
blk.10
blk.10.attn_k.weight
Q8_0
Q8_0
[768, 384]
blk.10.attn_norm.weight
F32
F32
[768]
blk.10.attn_output.weight
Q8_0
Q8_0
[768, 768]
blk.10.attn_q.weight
Q8_0
Q8_0
[768, 768]
blk.10.attn_v.weight
Q8_0
Q8_0
[768, 384]
blk.10.ffn_down.weight
Q8_0
Q8_0
[3072, 768]
blk.10.ffn_gate.weight
Q8_0
Q8_0
[768, 3072]
blk.10.ffn_norm.weight
F32
F32
[768]
blk.10.ffn_up.weight
Q8_0
Q8_0
[768, 3072]
blk.11
blk.11.attn_k.weight
Q8_0
Q8_0
[768, 384]
blk.11.attn_norm.weight
F32
F32
[768]
blk.11.attn_output.weight
Q8_0
Q8_0
[768, 768]
blk.11.attn_q.weight
Q8_0
Q8_0
[768, 768]
blk.11.attn_v.weight
Q8_0
Q8_0
[768, 384]
blk.11.ffn_down.weight
Q8_0
Q8_0
[3072, 768]
blk.11.ffn_gate.weight
Q8_0
Q8_0
[768, 3072]
blk.11.ffn_norm.weight
F32
F32
[768]
blk.11.ffn_up.weight
Q8_0
Q8_0
[768, 3072]
output.weight
Q8_0
Q8_0
[768, 32768]
output_norm.weight
F32
F32
[768]