9 Downloads Updated 9 months ago
Updated 9 months ago
9 months ago
ddd12c88ee39 Β· 40GB Β·

Introducing Lumo-70B-Instruct - the largest and most advanced AI model ever created for the Solana ecosystem. Built on Metaβs groundbreaking LLaMa 3.3 70B Instruct foundation, this revolutionary model represents a quantum leap in blockchain-specific artificial intelligence. With an unprecedented 70 billion parameters and trained on the most comprehensive Solana documentation dataset ever assembled, Lumo-70B-Instruct sets a new standard for developer assistance in the blockchain space.
(Knowledge cut-off date: 17th January, 2025)
| Parameter | Details | 
|---|---|
| Base Model | Meta LLaMa 3.3 70B Instruct | 
| Fine-Tuning Framework | HuggingFace Transformers, 4-bit Quantization | 
| Dataset Size | 28,502 expertly curated Q&A pairs | 
| Context Length | 4,096 tokens | 
| Training Steps | 10,000 | 
| Learning Rate | 3e-4 | 
| Batch Size | 1 per GPU with 4x gradient accumulation | 
| Epochs | 2 | 
| Model Size | 70 billion parameters (quantized for efficiency) | 
| Quantization | 4-bit NF4 with FP16 compute dtype | 
The model employs cutting-edge quantization and optimization techniques to harness the full potential of 70B parameters:
+---------------------------+     +----------------------+     +-------------------------+
|    Base Model            |     |   Optimization       |     |    Fine-Tuned Model    |
|  LLaMa 3.3 70B Instruct  | --> | 4-bit Quantization  | --> |   Lumo-70B-Instruct    |
|                         |     |   SDPA Attention     |     |                         |
+---------------------------+     +----------------------+     +-------------------------+
Comprehensive integration of all major Solana ecosystem documentation:
| Source | Documentation Coverage | 
|---|---|
| Jito | Complete Jito wallet and feature documentation | 
| Raydium | Full DEX documentation and protocol specifications | 
| Jupiter | Comprehensive DEX aggregator documentation | 
| Helius | Complete developer tools and API documentation | 
| QuickNode | Full Solana infrastructure documentation | 
| ChainStack | Comprehensive node and infrastructure documentation | 
| Meteora | Complete protocol and infrastructure documentation | 
| PumpPortal | Full platform documentation and specifications | 
| DexScreener | Complete DEX explorer documentation | 
| MagicEden | Comprehensive NFT marketplace documentation | 
| Tatum | Complete blockchain API and tools documentation | 
| Alchemy | Full blockchain infrastructure documentation | 
| Bitquery | Comprehensive blockchain data solution documentation | 
pip install transformers datasets bitsandbytes accelerate
from transformers import LlamaForCausalLM, AutoTokenizer
import torch
from transformers import BitsAndBytesConfig
# Configure 4-bit quantization
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.float16,
    llm_int8_enable_fp32_cpu_offload=True
)
model = LlamaForCausalLM.from_pretrained(
    "lumolabs-ai/Lumo-70B-Instruct",
    device_map="auto",
    quantization_config=bnb_config,
    use_cache=False,
    attn_implementation="sdpa"
)
tokenizer = AutoTokenizer.from_pretrained("lumolabs-ai/Lumo-70B-Instruct")
def complete_chat(model, tokenizer, messages, max_new_tokens=128):
    inputs = tokenizer.apply_chat_template(
        messages,
        return_tensors="pt",
        return_dict=True,
        add_generation_prompt=True
    ).to(model.device)
    
    with torch.inference_mode():
        outputs = model.generate(
            **inputs,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            temperature=0.7,
            top_p=0.95
        )
    return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Example usage
response = complete_chat(model, tokenizer, [
    {"role": "system", "content": "You are Lumo, an expert Solana assistant."},
    {"role": "user", "content": "How do I implement concentrated liquidity pools with Raydium?"}
])
| Metric | Value | 
|---|---|
| Validation Loss | 1.31 | 
| BLEU Score | 94% | 
| Code Generation Accuracy | 97% | 
| Context Retention | 99% | 
| Response Latency | ~2.5s (4-bit quant) | 

| Split | Count | Average Length | Quality Score | 
|---|---|---|---|
| Train | 27.1k | 2,048 tokens | 9.8β10 | 
| Test | 1.402k | 2,048 tokens | 9.9β10 | 
Enhanced Dataset Structure:
{
  "question": "Explain the implementation of Jito's MEV architecture",
  "answer": "Jito's MEV infrastructure consists of...",
  "context": "Complete architectural documentation...",
  "metadata": {
    "source": "jito-labs/mev-docs",
    "difficulty": "advanced",
    "category": "MEV"
  }
}
Experience the power of Lumo-70B-Instruct: π Try the Model
Join us in pushing the boundaries of blockchain AI: - Submit feedback via HuggingFace - Report performance metrics - Share use cases
Licensed under the GNU Affero General Public License v3.0 (AGPLv3).
Connect with the Lumo community: - Twitter: Lumo Labs - Telegram: Join our server
Special thanks to: - The Solana Foundation - Meta AI for LLaMa 3.3 - The broader Solana ecosystem - Our dedicated community of developers