A series of multimodal LLMs (MLLMs) designed for vision-language understanding.

vision 8b

58K 4 weeks ago

Readme

Note: this model requires Ollama 0.3.10 or later.

MiniCPM-V 2.6 is the latest and most capable model in the MiniCPM-V series. The model is built on SigLip-400M and Qwen2-7B with a total of 8B parameters. It exhibits a significant performance improvement over MiniCPM-Llama3-V 2.5, and introduces new features for multi-image and video understanding. Notable features of MiniCPM-V 2.6 include:

  • 🔥 Leading Performance: MiniCPM-V 2.6 achieves an average score of 65.2 on the latest version of OpenCompass, a comprehensive evaluation over 8 popular benchmarks. With only 8B parameters, it surpasses widely used proprietary models like GPT-4o mini, GPT-4V, Gemini 1.5 Pro, and Claude 3.5 Sonnet for single image understanding.

  • 🖼️ Multi Image Understanding and In-context Learning. MiniCPM-V 2.6 can also perform conversation and reasoning over multiple images. It achieves state-of-the-art performance on popular multi-image benchmarks such as Mantis-Eval, BLINK, Mathverse mv and Sciverse mv, and also shows promising in-context learning capability.

  • 💪 Strong OCR Capability: MiniCPM-V 2.6 can process images with any aspect ratio and up to 1.8 million pixels (e.g., 1344x1344). It achieves state-of-the-art performance on OCRBench, surpassing proprietary models such as GPT-4o, GPT-4V, and Gemini 1.5 Pro. Based on the the latest RLAIF-V and VisCPM techniques, it features trustworthy behaviors, with significantly lower hallucination rates than GPT-4o and GPT-4V on Object HalBench, and supports multilingual capabilities on English, Chinese, German, French, Italian, Korean, etc.

  • 🚀 Superior Efficiency: In addition to its friendly size, MiniCPM-V 2.6 also shows state-of-the-art token density (i.e., number of pixels encoded into each visual token). It produces only 640 tokens when processing a 1.8M pixel image, which is 75% fewer than most models. This directly improves the inference speed, first-token latency, memory usage, and power consumption.

Refrences

GitHub

Hugging Face