CodeGemma is a collection of powerful, lightweight models that can perform a variety of coding tasks like fill-in-the-middle code completion, code generation, natural language understanding, mathematical reasoning, and instruction following.
2b
7b
528.4K Pulls Updated 7 months ago
d2aab68c0145 · 1.2GB
-
gemma.attention.head_count88
-
gemma.attention.head_count_kv11
-
gemma.attention.key_length256256
-
gemma.attention.layer_norm_rms_epsilon1e-061e-06
-
gemma.attention.value_length256256
-
gemma.block_count1818
-
gemma.context_length81928192
-
gemma.embedding_length20482048
-
gemma.feed_forward_length1638416384
-
general.architecturegemmagemma
-
general.file_type1010
-
general.namecodegemma-1.1-2bcodegemma-1.1-2b
-
general.quantization_version22
-
tokenizer.ggml.add_bos_tokentruetrue
-
tokenizer.ggml.add_eos_tokenfalsefalse
-
tokenizer.ggml.bos_token_id22
-
tokenizer.ggml.eos_token_id11
-
tokenizer.ggml.eot_token_id107107
-
tokenizer.ggml.middle_token_id6868
-
tokenizer.ggml.modelllamallama
-
tokenizer.ggml.padding_token_id00
-
tokenizer.ggml.predefaultdefault
-
tokenizer.ggml.prefix_token_id6767
-
tokenizer.ggml.scores[0, 0, 0, 0, 0, ...][0, 0, 0, 0, 0, ...]
-
tokenizer.ggml.suffix_token_id6969
-
tokenizer.ggml.token_type[3, 3, 3, 2, 1, ...][3, 3, 3, 2, 1, ...]
-
tokenizer.ggml.tokens[<pad>, <eos>, <bos>, <unk>, <mask>, ...][<pad>, <eos>, <bos>, <unk>, <mask>, ...]
-
token_embd.weightQ6_K[2048, 256000]
-
blk.0.attn_k.weightQ2_K[2048, 256]
-
blk.0.attn_norm.weightF32[2048]
-
blk.0.attn_output.weightQ3_K[2048, 2048]
-
blk.0.attn_q.weightQ2_K[2048, 2048]
-
blk.0.attn_v.weightQ4_K[2048, 256]
-
blk.0.ffn_down.weightQ3_K[16384, 2048]
-
blk.0.ffn_gate.weightQ2_K[2048, 16384]
-
blk.0.ffn_norm.weightF32[2048]
-
blk.0.ffn_up.weightQ2_K[2048, 16384]
-
blk.1.attn_k.weightQ2_K[2048, 256]
-
blk.1.attn_norm.weightF32[2048]
-
blk.1.attn_output.weightQ3_K[2048, 2048]
-
blk.1.attn_q.weightQ2_K[2048, 2048]
-
blk.1.attn_v.weightQ4_K[2048, 256]
-
blk.1.ffn_down.weightQ3_K[16384, 2048]
-
blk.1.ffn_gate.weightQ2_K[2048, 16384]
-
blk.1.ffn_norm.weightF32[2048]
-
blk.1.ffn_up.weightQ2_K[2048, 16384]
-
blk.2.attn_k.weightQ2_K[2048, 256]
-
blk.2.attn_norm.weightF32[2048]
-
blk.2.attn_output.weightQ3_K[2048, 2048]
-
blk.2.attn_q.weightQ2_K[2048, 2048]
-
blk.2.attn_v.weightQ4_K[2048, 256]
-
blk.2.ffn_down.weightQ3_K[16384, 2048]
-
blk.2.ffn_gate.weightQ2_K[2048, 16384]
-
blk.2.ffn_norm.weightF32[2048]
-
blk.2.ffn_up.weightQ2_K[2048, 16384]
-
blk.3.attn_k.weightQ2_K[2048, 256]
-
blk.3.attn_norm.weightF32[2048]
-
blk.3.attn_output.weightQ3_K[2048, 2048]
-
blk.3.attn_q.weightQ2_K[2048, 2048]
-
blk.3.attn_v.weightQ4_K[2048, 256]
-
blk.3.ffn_down.weightQ3_K[16384, 2048]
-
blk.3.ffn_gate.weightQ2_K[2048, 16384]
-
blk.3.ffn_norm.weightF32[2048]
-
blk.3.ffn_up.weightQ2_K[2048, 16384]
-
blk.4.attn_k.weightQ2_K[2048, 256]
-
blk.4.attn_norm.weightF32[2048]
-
blk.4.attn_output.weightQ3_K[2048, 2048]
-
blk.4.attn_q.weightQ2_K[2048, 2048]
-
blk.4.attn_v.weightQ4_K[2048, 256]
-
blk.4.ffn_down.weightQ3_K[16384, 2048]
-
blk.4.ffn_gate.weightQ2_K[2048, 16384]
-
blk.4.ffn_norm.weightF32[2048]
-
blk.4.ffn_up.weightQ2_K[2048, 16384]
-
blk.5.attn_k.weightQ2_K[2048, 256]
-
blk.5.attn_norm.weightF32[2048]
-
blk.5.attn_output.weightQ3_K[2048, 2048]
-
blk.5.attn_q.weightQ2_K[2048, 2048]
-
blk.5.attn_v.weightQ4_K[2048, 256]
-
blk.5.ffn_down.weightQ3_K[16384, 2048]
-
blk.5.ffn_gate.weightQ2_K[2048, 16384]
-
blk.5.ffn_norm.weightF32[2048]
-
blk.5.ffn_up.weightQ2_K[2048, 16384]
-
blk.6.attn_k.weightQ2_K[2048, 256]
-
blk.6.attn_norm.weightF32[2048]
-
blk.6.attn_output.weightQ3_K[2048, 2048]
-
blk.6.attn_q.weightQ2_K[2048, 2048]
-
blk.6.attn_v.weightQ4_K[2048, 256]
-
blk.6.ffn_down.weightQ3_K[16384, 2048]
-
blk.6.ffn_gate.weightQ2_K[2048, 16384]
-
blk.6.ffn_norm.weightF32[2048]
-
blk.6.ffn_up.weightQ2_K[2048, 16384]
-
blk.7.attn_k.weightQ2_K[2048, 256]
-
blk.7.attn_norm.weightF32[2048]
-
blk.7.attn_output.weightQ3_K[2048, 2048]
-
blk.7.attn_q.weightQ2_K[2048, 2048]
-
blk.7.attn_v.weightQ4_K[2048, 256]
-
blk.7.ffn_down.weightQ3_K[16384, 2048]
-
blk.7.ffn_gate.weightQ2_K[2048, 16384]
-
blk.7.ffn_norm.weightF32[2048]
-
blk.7.ffn_up.weightQ2_K[2048, 16384]
-
blk.8.attn_k.weightQ2_K[2048, 256]
-
blk.8.attn_norm.weightF32[2048]
-
blk.8.attn_output.weightQ3_K[2048, 2048]
-
blk.8.attn_q.weightQ2_K[2048, 2048]
-
blk.8.attn_v.weightQ4_K[2048, 256]
-
blk.8.ffn_down.weightQ3_K[16384, 2048]
-
blk.8.ffn_gate.weightQ2_K[2048, 16384]
-
blk.8.ffn_norm.weightF32[2048]
-
blk.8.ffn_up.weightQ2_K[2048, 16384]
-
blk.9.attn_k.weightQ2_K[2048, 256]
-
blk.9.attn_norm.weightF32[2048]
-
blk.9.attn_output.weightQ3_K[2048, 2048]
-
blk.9.attn_q.weightQ2_K[2048, 2048]
-
blk.9.attn_v.weightQ4_K[2048, 256]
-
blk.9.ffn_down.weightQ3_K[16384, 2048]
-
blk.9.ffn_gate.weightQ2_K[2048, 16384]
-
blk.9.ffn_norm.weightF32[2048]
-
blk.9.ffn_up.weightQ2_K[2048, 16384]
-
blk.10.attn_k.weightQ2_K[2048, 256]
-
blk.10.attn_norm.weightF32[2048]
-
blk.10.attn_output.weightQ3_K[2048, 2048]
-
blk.10.attn_q.weightQ2_K[2048, 2048]
-
blk.10.attn_v.weightQ4_K[2048, 256]
-
blk.10.ffn_down.weightQ3_K[16384, 2048]
-
blk.10.ffn_gate.weightQ2_K[2048, 16384]
-
blk.10.ffn_norm.weightF32[2048]
-
blk.10.ffn_up.weightQ2_K[2048, 16384]
-
blk.11.attn_k.weightQ2_K[2048, 256]
-
blk.11.attn_norm.weightF32[2048]
-
blk.11.attn_output.weightQ3_K[2048, 2048]
-
blk.11.attn_q.weightQ2_K[2048, 2048]
-
blk.11.attn_v.weightQ4_K[2048, 256]
-
blk.11.ffn_down.weightQ3_K[16384, 2048]
-
blk.11.ffn_gate.weightQ2_K[2048, 16384]
-
blk.11.ffn_norm.weightF32[2048]
-
blk.11.ffn_up.weightQ2_K[2048, 16384]
-
blk.12.attn_k.weightQ2_K[2048, 256]
-
blk.12.attn_norm.weightF32[2048]
-
blk.12.attn_output.weightQ3_K[2048, 2048]
-
blk.12.attn_q.weightQ2_K[2048, 2048]
-
blk.12.attn_v.weightQ4_K[2048, 256]
-
blk.12.ffn_down.weightQ3_K[16384, 2048]
-
blk.12.ffn_gate.weightQ2_K[2048, 16384]
-
blk.12.ffn_norm.weightF32[2048]
-
blk.12.ffn_up.weightQ2_K[2048, 16384]
-
blk.13.attn_k.weightQ2_K[2048, 256]
-
blk.13.attn_norm.weightF32[2048]
-
blk.13.attn_output.weightQ3_K[2048, 2048]
-
blk.13.attn_q.weightQ2_K[2048, 2048]
-
blk.13.attn_v.weightQ4_K[2048, 256]
-
blk.13.ffn_down.weightQ3_K[16384, 2048]
-
blk.13.ffn_gate.weightQ2_K[2048, 16384]
-
blk.13.ffn_norm.weightF32[2048]
-
blk.13.ffn_up.weightQ2_K[2048, 16384]
-
blk.14.attn_k.weightQ2_K[2048, 256]
-
blk.14.attn_norm.weightF32[2048]
-
blk.14.attn_output.weightQ3_K[2048, 2048]
-
blk.14.attn_q.weightQ2_K[2048, 2048]
-
blk.14.attn_v.weightQ4_K[2048, 256]
-
blk.14.ffn_down.weightQ3_K[16384, 2048]
-
blk.14.ffn_gate.weightQ2_K[2048, 16384]
-
blk.14.ffn_norm.weightF32[2048]
-
blk.14.ffn_up.weightQ2_K[2048, 16384]
-
blk.15.attn_k.weightQ2_K[2048, 256]
-
blk.15.attn_norm.weightF32[2048]
-
blk.15.attn_output.weightQ3_K[2048, 2048]
-
blk.15.attn_q.weightQ2_K[2048, 2048]
-
blk.15.attn_v.weightQ4_K[2048, 256]
-
blk.15.ffn_down.weightQ3_K[16384, 2048]
-
blk.15.ffn_gate.weightQ2_K[2048, 16384]
-
blk.15.ffn_norm.weightF32[2048]
-
blk.15.ffn_up.weightQ2_K[2048, 16384]
-
blk.16.attn_k.weightQ2_K[2048, 256]
-
blk.16.attn_norm.weightF32[2048]
-
blk.16.attn_output.weightQ3_K[2048, 2048]
-
blk.16.attn_q.weightQ2_K[2048, 2048]
-
blk.16.attn_v.weightQ4_K[2048, 256]
-
blk.16.ffn_down.weightQ3_K[16384, 2048]
-
blk.16.ffn_gate.weightQ2_K[2048, 16384]
-
blk.16.ffn_norm.weightF32[2048]
-
blk.16.ffn_up.weightQ2_K[2048, 16384]
-
blk.17.attn_k.weightQ2_K[2048, 256]
-
blk.17.attn_norm.weightF32[2048]
-
blk.17.attn_output.weightQ3_K[2048, 2048]
-
blk.17.attn_q.weightQ2_K[2048, 2048]
-
blk.17.attn_v.weightQ4_K[2048, 256]
-
blk.17.ffn_down.weightQ3_K[16384, 2048]
-
blk.17.ffn_gate.weightQ2_K[2048, 16384]
-
blk.17.ffn_norm.weightF32[2048]
-
blk.17.ffn_up.weightQ2_K[2048, 16384]
-
output_norm.weightF32[2048]
Metadata
Tensor
blk.0
blk.1
blk.2
blk.3
blk.4
blk.5
blk.6
blk.7
blk.8
blk.9
blk.10
blk.11
blk.12
blk.13
blk.14
blk.15
blk.16
blk.17