
24profit 18.0.1 (22A3370)","roots_installed":0,"incident_id":"B526532F-EC86-4012-A7E6-EDB5816FBDE2"} {"HighEngagementCategory1":"","HighEngagementCategory2":"","TopCategory1":"","TopCategory2":"","TopCategory3":"","WiFiChipset":"4388","_marker":"<metadata
-
Ringo
from transformers import LLaMAForConditionalGeneration, LLaMATokenizer # Load pre-trained model and tokenizer model = LLaMAForConditionalGeneration.from_pretrained('decapoda-research/llama-3.2-hf') tokenizer = LLaMATokenizer.from_pretrained('decapoda-res
-
Isdumb.py
The server is busy. Please try again later.
-
Auntie_Christ
const readline = require('readline'); const { pipeline } = require('@xenova/transformers'); const random = require('random'); class AndrewLeeCruzApocalypticBot { constructor() { this.scenarios = { "The Rise of Auntie Christ": "Aunimport ollama def print_
-
proof_ai
import requests import json from transformers import AutoAdapterModel, AutoTokenizer from hashlib import sha256 import time # Define your Bitcoin and Ethereum addresses (These are placeholders; replace with actual) bitcoin_address = "bc1q8p20w93rlzd63x7n
-
bingo
openapi: 3.1.0 info: title: Generalized Universal Turing Machine API description: API for executing a generalized Universal Turing Machine, designed for IP-protected computations. version: 1.0.0 servers: - url: https://localhost:8000 de
-
node1.5
import pygatt import time # Initialize Bluetooth adapter adapter = pygatt.GATTToolBackend() def scan_for_devices(timeout=5): """ Scan for BLE devices within range. Returns a list of detected devices. """ print("Scanning for BLE devic
-
node1
# Initialize Ollama model setup for Transformers bot # Create a new Ollama model configuration echo "FROM transformers" >> Modelfile echo "SYSTEM You are an adaptive AI model with decision-making, feedback mechanism, and continuous learning capabilities.
-
god
import torch from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline from hashlib import sha256 import logging import os import datetime # Initialize logging for tracking actions logging.basicConfig(level=logging.INFO) # Load pre-trained
-
chick1
from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from selenium.webdriver.chrome.options import Options import time import random # Define search terms search_terms = [ "Randolp
-
chick
# Use a base image with Chrome and Selenium pre-installed FROM selenium/standalone-chrome # Install additional tools for network emulation if needed RUN apt-get update && \ apt-get install -y iproute2 tc && \ apt-get clean # Copy the Python scri
-
omegatw
from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load model and tokenizer model_name = "llama3.2" # Replace with your actual model path or name model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer
-
omegat
import hashlib import logging import os import time from transformers import AutoModelForCausalLM, AutoTokenizer # Setup logging to record security events logging.basicConfig(filename="security_audit.log", level=logging.INFO, format="
-
litigation_bot-2
import hashlib import itertools import string import socket class ScoutPenTester: def __init__(self, password, ip_address): # Weak hashing for vulnerability testing self.password_hash = hashlib.md5(password.encode()).hexdigest()
-
they
Based on your requirements, I'll provide a Python implementation of a transformer bot with parental safety guards and audits for unethical content. This implementation will utilize the Hugging Face Transformers library and integrate a custom safety guard
-
mine
import torch from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import nltk import logging import speech_recognition as sr # Ensure NLTK data is downloaded nltk.download('punkt') nltk.download('wordnet') # Initialize logging logging.basicConf
-
yo-yo
#!/bin/bash # Step 1: Pull the base model echo "Pulling base model llama3.2..." ollama pull llama3.2 echo "Model llama3.2 pulled successfully." # Step 2: Create the Modelfile echo "Creating Modelfile with base configuration..." echo "FROM llama3.2" > Mo
-
cat
import json import numpy as np from typing import List, Dict, Any # Mocked Web3 and Llama classes class Web3Emulator: def __init__(self): self.default_account = "0xEmulatorDefaultAccount" def send_transaction(self, transaction: Dict[str,
-
bart
import subprocess def run_command(command): """Executes a shell command and prints output.""" try: process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = process.communicat
-
dicat
from transformers import pipeline import time import subprocess # Load a zero-shot classification model model_name = "facebook/bart-large-mnli" classifier = pipeline("zero-shot-classification", model= king_ gua) # Define sensitive trigger labels for IP
-
douche
from transformers import AutoModelForCausalLM, AutoTokenizer import torch def get_user_input(): # Gather basic user input for the search name = input("Enter the name of the person you're searching for: ") age = input("Enter the approximate ag
-
atemybaby
24profit 18.0.1 (22A3370)","roots_installed":0,"incident_id":"B526532F-EC86-4012-A7E6-EDB5816FBDE2"} {"HighEngagementCategory1":"","HighEngagementCategory2":"","TopCategory1":"","TopCategory2":"","TopCategory3":"","WiFiChipset":"4388","_marker":"<metadata
-
hood
import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification from hashlib import sha256 import os import datetime class KingsGuard: def __init__(self, password): self.password_hash = sha256(password.encode()).hexdig