13 Downloads Updated 2 months ago
Updated 2 months ago
2 months ago
7f948ba57d65 Β· 4.0GB Β·
A fine-tuned Gemma 3 1B instruction model specialized for English-to-Luganda translation and Luganda conversational AI. The model accepts input in both English and Luganda but outputs responses exclusively in Luganda.
# Run the recommended Q4_K_M quantization
ollama run crane-ai-labs/ganda-gemma-1b:q4-k-m
# Try different quantizations based on your needs
ollama run crane-ai-labs/ganda-gemma-1b:q8-0    # Higher quality
ollama run crane-ai-labs/ganda-gemma-1b:q4-k-s  # Smaller size
ollama run crane-ai-labs/ganda-gemma-1b:f16     # Original quality
| Model | Parameters | BLEU | chrF++ | Efficiency* | 
|---|---|---|---|---|
| Gemma 3 4B | 4B | 1.1 | 20.05 | 0.28 | 
| Gemma 3 27B | 27B | 3.65 | 31.37 | 0.14 | 
| GPT-5 Mini | N/A | 5.14 | 36.55 | N/A | 
| Ganda Gemma 1B | 1B | 6.99 | 40.32 | 6.99 | 
| Gemini 2.0 Flash | Large | 7.94 | 43.38 | N/A | 
*Efficiency = BLEU Score / Parameters (in billions)
π Efficiency Leader: Achieves the highest BLEU-to-parameter ratio (6.99 BLEU per billion parameters)
π Size Advantage: Outperforms Gemma 3 4B (4x larger) by 535% on BLEU score
π Competitive Quality: Outperforms GPT-5 Mini by 36% on BLEU score with known parameter count
β‘ Practical Deployment: Runs efficiently on consumer hardware while maintaining quality
| Quantization | Size | Quality | Use Case | 
|---|---|---|---|
f16 | 
~1.9GB | Highest | Maximum quality inference | 
f32 | 
~3.8GB | Highest | Research & benchmarking | 
q8-0 | 
~1.0GB | Very High | Production with ample resources | 
q5-k-m | 
~812MB | High | Balanced quality/size | 
q4-k-m | 
~769MB | Good | Recommended for most users | 
q4-k-s | 
~745MB | Good | Resource-constrained environments | 
q3-k-m | 
~689MB | Fair | Mobile/edge deployment | 
q2-k | 
~658MB | Lower | Minimal resource usage | 
The model is optimized with the following parameters:
temperature: 0.3      # Focused, coherent responses
top_p: 0.95          # Nucleus sampling
top_k: 64            # Top-k sampling  
max_tokens: 128      # Response length limit
repeat_penalty: 1.1  # Reduces repetition
ollama run crane-ai-labs/ganda-gemma-1b:q4-k-m
>>> Translate this to Luganda: "Hello, how are you today?"
ollama run crane-ai-labs/ganda-gemma-1b:q4-k-m
>>> Oli otya! 
import ollama
response = ollama.chat(
    model='crane-ai-labs/ganda-gemma-1b:q4-k-m',
    messages=[
        {
            'role': 'system',
            'content': 'You are a helpful Luganda conversation assistant.'
        },
        {
            'role': 'user', 
            'content': 'Can you help me learn basic Luganda greetings?'
        }
    ]
)
curl http://localhost:11434/api/chat -d '{
  "model": "crane-ai-labs/ganda-gemma-1b:q4-k-m",
  "messages": [
    {
      "role": "user",
      "content": "Translate: Good morning, how did you sleep?"
    }
  ]
}'
Ganda Gemma 1B delivers: - β High-quality English-to-Luganda translation - β Natural Luganda conversation - β Effective text summarization - β Fast inference on consumer hardware - β Efficient memory usage
The model uses the official Gemma 3 chat template:
<start_of_turn>user
Your message here<end_of_turn>
<start_of_turn>model
Model response<end_of_turn>
Install Ollama (if not already installed):
curl -fsSL https://ollama.com/install.sh | sh
Pull the model:
ollama pull crane-ai-labs/ganda-gemma-1b:q4-k-m
Start chatting:
ollama run crane-ai-labs/ganda-gemma-1b:q4-k-m
import ollama
client = ollama.Client()
response = client.chat(
    model='crane-ai-labs/ganda-gemma-1b:q4-k-m',
    messages=[
        {'role': 'user', 'content': 'Translate to Luganda: Hello!'}
    ]
)
print(response['message']['content'])
import { Ollama } from 'ollama'
const ollama = new Ollama({ host: 'http://127.0.0.1:11434' })
const response = await ollama.chat({
  model: 'crane-ai-labs/ganda-gemma-1b:q4-k-m',
  messages: [{ role: 'user', content: 'Translate to Luganda: Good morning!' }],
})
console.log(response.message.content)
This model is released under the Gemma Terms of Use. Please review the terms before use.
Found an issue or want to improve the model? We welcome: - Bug reports and feedback - Performance evaluations and benchmarks - Use case examples and integration guides - Documentation improvements
If you use these models in your research or applications, please cite:
@misc{crane_ai_labs_2025,
    author    = {Bakunga Bronson and Kato Steven Mubiru and Lwanga Caleb and Gimei Alex and Kavuma Lameck and Roland Ganafa and Sibomana Glorry and Atuhaire Collins and JohnRoy Nangeso and Tukamushaba Catherine},
    title     = {Ganda Gemma: A Fine-tuned Gemma 3 1B Model for Luganda conversational AI},
    year      = {2025},
    url       = {https://huggingface.co/CraneAILabs/ganda-gemma-1b},
    organization = {Crane AI Labs}
}
Built with β€οΈ by Crane AI Labs