NeuralDaredevil-8B-abliterated with more quantization
1,560 Pulls Updated 4 months ago
Updated 4 months ago
4 months ago
9ebf39b68c63 Β· 4.7GB
Readme
NeuralDaredevil-8B-abliterated
This is a DPO fine-tune of mlabonne/Daredevil-8-abliterated, trained on one epoch of mlabonne/orpo-dpo-mix-40k. The DPO fine-tuning successfully recovers the performance loss due to the abliteration process, making it an excellent uncensored model.
π Applications
NeuralDaredevil-8B-abliterated performs better than the Instruct model on my tests.
You can use it for any application that doesnβt require alignment, like role-playing. Tested on LM Studio using the βLlama 3β preset.
β‘ Quantization
Thanks to QuantFactory, Zoyd, and solidrust for providint these quants.
- GGUF: https://huggingface.co/QuantFactory/NeuralDaredevil-8B-abliterated-GGUF
- EXL2: https://huggingface.co/Zoyd/mlabonne_NeuralDaredevil-8B-abliterated-4_0bpw_exl2
- AWQ: https://huggingface.co/solidrust/NeuralDaredevil-8B-abliterated-AWQ
- ollama: https://ollama.com/lstep/neuraldaredevil-8b-abliterated
π Evaluation
Open LLM Leaderboard
NeuralDaredevil-8B is the best-performing uncensored 8B model on the Open LLM Leaderboard (MMLU score).
Nous
Evaluation performed using LLM AutoEval. See the entire leaderboard here.
Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
---|---|---|---|---|---|
mlabonne/NeuralDaredevil-8B-abliterated π | 55.87 | 43.73 | 73.6 | 59.36 | 46.8 |
mlabonne/Daredevil-8B π | 55.87 | 44.13 | 73.52 | 59.05 | 46.77 |
mlabonne/Daredevil-8B-abliterated π | 55.06 | 43.29 | 73.33 | 57.47 | 46.17 |
NousResearch/Hermes-2-Theta-Llama-3-8B π | 54.28 | 43.9 | 72.62 | 56.36 | 44.23 |
openchat/openchat-3.6-8b-20240522 π | 53.49 | 44.03 | 73.67 | 49.78 | 46.48 |
meta-llama/Meta-Llama-3-8B-Instruct π | 51.34 | 41.22 | 69.86 | 51.65 | 42.64 |
meta-llama/Meta-Llama-3-8B π | 45.42 | 31.1 | 69.95 | 43.91 | 36.7 |
π³ Model family tree
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/Daredevil-8B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])