Models
GitHub
Discord
Turbo
Sign in
Download
Models
Download
GitHub
Discord
Sign in
ben1t0
/
tiny-llm
:latest
2,169
Downloads
Updated
1 year ago
Cancel
tiny-llm:latest
...
/
model
3682bcf66f4c · 5.7MB
Metadata
general.architecture
llama
llama
general.file_type
Q8_0
Q8_0
llama.attention.head_count
16
16
llama.attention.head_count_kv
16
16
llama.attention.layer_norm_rms_epsilon
1e-06
1e-06
llama.block_count
8
8
llama.context_length
2048
2048
llama.embedding_length
64
64
llama.feed_forward_length
256
256
llama.rope.dimension_count
4
4
tokenizer.ggml.bos_token_id
1
1
tokenizer.ggml.eos_token_id
2
2
tokenizer.ggml.model
llama
llama
tokenizer.ggml.scores
[0, 0, 0, 0, 0, ...]
[0, 0, 0, 0, 0, ...]
tokenizer.ggml.token_type
[2, 3, 3, 6, 6, ...]
[2, 3, 3, 6, 6, ...]
tokenizer.ggml.tokens
[<unk>, <s>, </s>, <0x00>, <0x01>, ...]
[<unk>, <s>, </s>, <0x00>, <0x01>, ...]
tokenizer.ggml.unknown_token_id
0
0
Tensor
Name
Type
Shape
token_embd.weight
Q8_0
Q8_0
[64, 32000]
blk.0
blk.0.attn_k.weight
Q8_0
Q8_0
[64, 64]
blk.0.attn_norm.weight
F32
F32
[64]
blk.0.attn_output.weight
Q8_0
Q8_0
[64, 64]
blk.0.attn_q.weight
Q8_0
Q8_0
[64, 64]
blk.0.attn_v.weight
Q8_0
Q8_0
[64, 64]
blk.0.ffn_down.weight
Q8_0
Q8_0
[256, 64]
blk.0.ffn_gate.weight
Q8_0
Q8_0
[64, 256]
blk.0.ffn_norm.weight
F32
F32
[64]
blk.0.ffn_up.weight
Q8_0
Q8_0
[64, 256]
blk.1
blk.1.attn_k.weight
Q8_0
Q8_0
[64, 64]
blk.1.attn_norm.weight
F32
F32
[64]
blk.1.attn_output.weight
Q8_0
Q8_0
[64, 64]
blk.1.attn_q.weight
Q8_0
Q8_0
[64, 64]
blk.1.attn_v.weight
Q8_0
Q8_0
[64, 64]
blk.1.ffn_down.weight
Q8_0
Q8_0
[256, 64]
blk.1.ffn_gate.weight
Q8_0
Q8_0
[64, 256]
blk.1.ffn_norm.weight
F32
F32
[64]
blk.1.ffn_up.weight
Q8_0
Q8_0
[64, 256]
blk.2
blk.2.attn_k.weight
Q8_0
Q8_0
[64, 64]
blk.2.attn_norm.weight
F32
F32
[64]
blk.2.attn_output.weight
Q8_0
Q8_0
[64, 64]
blk.2.attn_q.weight
Q8_0
Q8_0
[64, 64]
blk.2.attn_v.weight
Q8_0
Q8_0
[64, 64]
blk.2.ffn_down.weight
Q8_0
Q8_0
[256, 64]
blk.2.ffn_gate.weight
Q8_0
Q8_0
[64, 256]
blk.2.ffn_norm.weight
F32
F32
[64]
blk.2.ffn_up.weight
Q8_0
Q8_0
[64, 256]
blk.3
blk.3.attn_k.weight
Q8_0
Q8_0
[64, 64]
blk.3.attn_norm.weight
F32
F32
[64]
blk.3.attn_output.weight
Q8_0
Q8_0
[64, 64]
blk.3.attn_q.weight
Q8_0
Q8_0
[64, 64]
blk.3.attn_v.weight
Q8_0
Q8_0
[64, 64]
blk.3.ffn_down.weight
Q8_0
Q8_0
[256, 64]
blk.3.ffn_gate.weight
Q8_0
Q8_0
[64, 256]
blk.3.ffn_norm.weight
F32
F32
[64]
blk.3.ffn_up.weight
Q8_0
Q8_0
[64, 256]
blk.4
blk.4.attn_k.weight
Q8_0
Q8_0
[64, 64]
blk.4.attn_norm.weight
F32
F32
[64]
blk.4.attn_output.weight
Q8_0
Q8_0
[64, 64]
blk.4.attn_q.weight
Q8_0
Q8_0
[64, 64]
blk.4.attn_v.weight
Q8_0
Q8_0
[64, 64]
blk.4.ffn_down.weight
Q8_0
Q8_0
[256, 64]
blk.4.ffn_gate.weight
Q8_0
Q8_0
[64, 256]
blk.4.ffn_norm.weight
F32
F32
[64]
blk.4.ffn_up.weight
Q8_0
Q8_0
[64, 256]
blk.5
blk.5.attn_k.weight
Q8_0
Q8_0
[64, 64]
blk.5.attn_norm.weight
F32
F32
[64]
blk.5.attn_output.weight
Q8_0
Q8_0
[64, 64]
blk.5.attn_q.weight
Q8_0
Q8_0
[64, 64]
blk.5.attn_v.weight
Q8_0
Q8_0
[64, 64]
blk.5.ffn_down.weight
Q8_0
Q8_0
[256, 64]
blk.5.ffn_gate.weight
Q8_0
Q8_0
[64, 256]
blk.5.ffn_norm.weight
F32
F32
[64]
blk.5.ffn_up.weight
Q8_0
Q8_0
[64, 256]
blk.6
blk.6.attn_k.weight
Q8_0
Q8_0
[64, 64]
blk.6.attn_norm.weight
F32
F32
[64]
blk.6.attn_output.weight
Q8_0
Q8_0
[64, 64]
blk.6.attn_q.weight
Q8_0
Q8_0
[64, 64]
blk.6.attn_v.weight
Q8_0
Q8_0
[64, 64]
blk.6.ffn_down.weight
Q8_0
Q8_0
[256, 64]
blk.6.ffn_gate.weight
Q8_0
Q8_0
[64, 256]
blk.6.ffn_norm.weight
F32
F32
[64]
blk.6.ffn_up.weight
Q8_0
Q8_0
[64, 256]
blk.7
blk.7.attn_k.weight
Q8_0
Q8_0
[64, 64]
blk.7.attn_norm.weight
F32
F32
[64]
blk.7.attn_output.weight
Q8_0
Q8_0
[64, 64]
blk.7.attn_q.weight
Q8_0
Q8_0
[64, 64]
blk.7.attn_v.weight
Q8_0
Q8_0
[64, 64]
blk.7.ffn_down.weight
Q8_0
Q8_0
[256, 64]
blk.7.ffn_gate.weight
Q8_0
Q8_0
[64, 256]
blk.7.ffn_norm.weight
F32
F32
[64]
blk.7.ffn_up.weight
Q8_0
Q8_0
[64, 256]
output.weight
Q8_0
Q8_0
[64, 32000]
output_norm.weight
F32
F32
[64]