Models
GitHub
Discord
Docs
Cloud
Sign in
Download
Models
Download
GitHub
Discord
Docs
Cloud
Sign in
adhishtanaka
/
llama_3.2_1b-SQL
:latest
22
Downloads
Updated
2 months ago
This is a fine-tuned llama 3.2 model with 1 billion parameters. It turns plain English questions into SQL queries. It was trained using examples of questions and their matching SQL, making it easier to work with databases using natural language.
This is a fine-tuned llama 3.2 model with 1 billion parameters. It turns plain English questions into SQL queries. It was trained using examples of questions and their matching SQL, making it easier to work with databases using natural language.
Cancel
llama_3.2_1b-SQL:latest
...
/
model
d5479ede8bac · 808MB
Metadata
general.architecture
llama
llama
general.file_type
Q4_K_M
Q4_K_M
llama.attention.head_count
32
32
llama.attention.head_count_kv
8
8
llama.attention.key_length
64
64
llama.attention.layer_norm_rms_epsilon
1e-05
1e-05
llama.attention.value_length
64
64
llama.block_count
16
16
llama.context_length
131072
131072
llama.embedding_length
2048
2048
llama.feed_forward_length
8192
8192
llama.rope.dimension_count
64
64
llama.rope.freq_base
500000
500000
llama.vocab_size
128256
128256
tokenizer.ggml.add_bos_token
true
true
tokenizer.ggml.add_sep_token
false
false
tokenizer.ggml.bos_token_id
128000
128000
tokenizer.ggml.eos_token_id
128009
128009
tokenizer.ggml.merges
[Ġ Ġ, Ġ ĠĠĠ, ĠĠ ĠĠ, ĠĠĠ Ġ, i n, ...]
[Ġ Ġ, Ġ ĠĠĠ, ĠĠ ĠĠ, ĠĠĠ Ġ, i n, ...]
tokenizer.ggml.model
gpt2
gpt2
tokenizer.ggml.padding_token_id
128004
128004
tokenizer.ggml.pre
llama-bpe
llama-bpe
tokenizer.ggml.token_type
[1, 1, 1, 1, 1, ...]
[1, 1, 1, 1, 1, ...]
tokenizer.ggml.tokens
[!, ", #, $, %, ...]
[!, ", #, $, %, ...]
Tensor
Name
Type
Shape
token_embd.weight
Q6_K
Q6_K
[2048, 128256]
blk.0
blk.0.attn_k.weight
Q4_K
Q4_K
[2048, 512]
blk.0.attn_norm.weight
F32
F32
[2048]
blk.0.attn_output.weight
Q4_K
Q4_K
[2048, 2048]
blk.0.attn_q.weight
Q4_K
Q4_K
[2048, 2048]
blk.0.attn_v.weight
Q6_K
Q6_K
[2048, 512]
blk.0.ffn_down.weight
Q6_K
Q6_K
[8192, 2048]
blk.0.ffn_gate.weight
Q4_K
Q4_K
[2048, 8192]
blk.0.ffn_norm.weight
F32
F32
[2048]
blk.0.ffn_up.weight
Q4_K
Q4_K
[2048, 8192]
blk.1
blk.1.attn_k.weight
Q4_K
Q4_K
[2048, 512]
blk.1.attn_norm.weight
F32
F32
[2048]
blk.1.attn_output.weight
Q4_K
Q4_K
[2048, 2048]
blk.1.attn_q.weight
Q4_K
Q4_K
[2048, 2048]
blk.1.attn_v.weight
Q6_K
Q6_K
[2048, 512]
blk.1.ffn_down.weight
Q6_K
Q6_K
[8192, 2048]
blk.1.ffn_gate.weight
Q4_K
Q4_K
[2048, 8192]
blk.1.ffn_norm.weight
F32
F32
[2048]
blk.1.ffn_up.weight
Q4_K
Q4_K
[2048, 8192]
blk.2
blk.2.attn_k.weight
Q4_K
Q4_K
[2048, 512]
blk.2.attn_norm.weight
F32
F32
[2048]
blk.2.attn_output.weight
Q4_K
Q4_K
[2048, 2048]
blk.2.attn_q.weight
Q4_K
Q4_K
[2048, 2048]
blk.2.attn_v.weight
Q4_K
Q4_K
[2048, 512]
blk.2.ffn_down.weight
Q4_K
Q4_K
[8192, 2048]
blk.2.ffn_gate.weight
Q4_K
Q4_K
[2048, 8192]
blk.2.ffn_norm.weight
F32
F32
[2048]
blk.2.ffn_up.weight
Q4_K
Q4_K
[2048, 8192]
blk.3
blk.3.attn_k.weight
Q4_K
Q4_K
[2048, 512]
blk.3.attn_norm.weight
F32
F32
[2048]
blk.3.attn_output.weight
Q4_K
Q4_K
[2048, 2048]
blk.3.attn_q.weight
Q4_K
Q4_K
[2048, 2048]
blk.3.attn_v.weight
Q4_K
Q4_K
[2048, 512]
blk.3.ffn_down.weight
Q4_K
Q4_K
[8192, 2048]
blk.3.ffn_gate.weight
Q4_K
Q4_K
[2048, 8192]
blk.3.ffn_norm.weight
F32
F32
[2048]
blk.3.ffn_up.weight
Q4_K
Q4_K
[2048, 8192]
blk.4
blk.4.attn_k.weight
Q4_K
Q4_K
[2048, 512]
blk.4.attn_norm.weight
F32
F32
[2048]
blk.4.attn_output.weight
Q4_K
Q4_K
[2048, 2048]
blk.4.attn_q.weight
Q4_K
Q4_K
[2048, 2048]
blk.4.attn_v.weight
Q6_K
Q6_K
[2048, 512]
blk.4.ffn_down.weight
Q6_K
Q6_K
[8192, 2048]
blk.4.ffn_gate.weight
Q4_K
Q4_K
[2048, 8192]
blk.4.ffn_norm.weight
F32
F32
[2048]
blk.4.ffn_up.weight
Q4_K
Q4_K
[2048, 8192]
blk.5
blk.5.attn_k.weight
Q4_K
Q4_K
[2048, 512]
blk.5.attn_norm.weight
F32
F32
[2048]
blk.5.attn_output.weight
Q4_K
Q4_K
[2048, 2048]
blk.5.attn_q.weight
Q4_K
Q4_K
[2048, 2048]
blk.5.attn_v.weight
Q4_K
Q4_K
[2048, 512]
blk.5.ffn_down.weight
Q4_K
Q4_K
[8192, 2048]
blk.5.ffn_gate.weight
Q4_K
Q4_K
[2048, 8192]
blk.5.ffn_norm.weight
F32
F32
[2048]
blk.5.ffn_up.weight
Q4_K
Q4_K
[2048, 8192]
blk.6
blk.6.attn_k.weight
Q4_K
Q4_K
[2048, 512]
blk.6.attn_norm.weight
F32
F32
[2048]
blk.6.attn_output.weight
Q4_K
Q4_K
[2048, 2048]
blk.6.attn_q.weight
Q4_K
Q4_K
[2048, 2048]
blk.6.attn_v.weight
Q4_K
Q4_K
[2048, 512]
blk.6.ffn_down.weight
Q4_K
Q4_K
[8192, 2048]
blk.6.ffn_gate.weight
Q4_K
Q4_K
[2048, 8192]
blk.6.ffn_norm.weight
F32
F32
[2048]
blk.6.ffn_up.weight
Q4_K
Q4_K
[2048, 8192]
blk.7
blk.7.attn_k.weight
Q4_K
Q4_K
[2048, 512]
blk.7.attn_norm.weight
F32
F32
[2048]
blk.7.attn_output.weight
Q4_K
Q4_K
[2048, 2048]
blk.7.attn_q.weight
Q4_K
Q4_K
[2048, 2048]
blk.7.attn_v.weight
Q6_K
Q6_K
[2048, 512]
blk.7.ffn_down.weight
Q6_K
Q6_K
[8192, 2048]
blk.7.ffn_gate.weight
Q4_K
Q4_K
[2048, 8192]
blk.7.ffn_norm.weight
F32
F32
[2048]
blk.7.ffn_up.weight
Q4_K
Q4_K
[2048, 8192]
blk.8
blk.8.attn_k.weight
Q4_K
Q4_K
[2048, 512]
blk.8.attn_norm.weight
F32
F32
[2048]
blk.8.attn_output.weight
Q4_K
Q4_K
[2048, 2048]
blk.8.attn_q.weight
Q4_K
Q4_K
[2048, 2048]
blk.8.attn_v.weight
Q4_K
Q4_K
[2048, 512]
blk.8.ffn_down.weight
Q4_K
Q4_K
[8192, 2048]
blk.8.ffn_gate.weight
Q4_K
Q4_K
[2048, 8192]
blk.8.ffn_norm.weight
F32
F32
[2048]
blk.8.ffn_up.weight
Q4_K
Q4_K
[2048, 8192]
blk.9
blk.9.attn_k.weight
Q4_K
Q4_K
[2048, 512]
blk.9.attn_norm.weight
F32
F32
[2048]
blk.9.attn_output.weight
Q4_K
Q4_K
[2048, 2048]
blk.9.attn_q.weight
Q4_K
Q4_K
[2048, 2048]
blk.9.attn_v.weight
Q4_K
Q4_K
[2048, 512]
blk.9.ffn_down.weight
Q4_K
Q4_K
[8192, 2048]
blk.9.ffn_gate.weight
Q4_K
Q4_K
[2048, 8192]
blk.9.ffn_norm.weight
F32
F32
[2048]
blk.9.ffn_up.weight
Q4_K
Q4_K
[2048, 8192]
blk.10
blk.10.attn_k.weight
Q4_K
Q4_K
[2048, 512]
blk.10.attn_norm.weight
F32
F32
[2048]
blk.10.attn_output.weight
Q4_K
Q4_K
[2048, 2048]
blk.10.attn_q.weight
Q4_K
Q4_K
[2048, 2048]
blk.10.attn_v.weight
Q6_K
Q6_K
[2048, 512]
blk.10.ffn_down.weight
Q6_K
Q6_K
[8192, 2048]
blk.10.ffn_gate.weight
Q4_K
Q4_K
[2048, 8192]
blk.10.ffn_norm.weight
F32
F32
[2048]
blk.10.ffn_up.weight
Q4_K
Q4_K
[2048, 8192]
blk.11
blk.11.attn_k.weight
Q4_K
Q4_K
[2048, 512]
blk.11.attn_norm.weight
F32
F32
[2048]
blk.11.attn_output.weight
Q4_K
Q4_K
[2048, 2048]
blk.11.attn_q.weight
Q4_K
Q4_K
[2048, 2048]
blk.11.attn_v.weight
Q4_K
Q4_K
[2048, 512]
blk.11.ffn_down.weight
Q4_K
Q4_K
[8192, 2048]
blk.11.ffn_gate.weight
Q4_K
Q4_K
[2048, 8192]
blk.11.ffn_norm.weight
F32
F32
[2048]
blk.11.ffn_up.weight
Q4_K
Q4_K
[2048, 8192]
blk.12
blk.12.attn_k.weight
Q4_K
Q4_K
[2048, 512]
blk.12.attn_norm.weight
F32
F32
[2048]
blk.12.attn_output.weight
Q4_K
Q4_K
[2048, 2048]
blk.12.attn_q.weight
Q4_K
Q4_K
[2048, 2048]
blk.12.attn_v.weight
Q4_K
Q4_K
[2048, 512]
blk.12.ffn_down.weight
Q4_K
Q4_K
[8192, 2048]
blk.12.ffn_gate.weight
Q4_K
Q4_K
[2048, 8192]
blk.12.ffn_norm.weight
F32
F32
[2048]
blk.12.ffn_up.weight
Q4_K
Q4_K
[2048, 8192]
blk.13
blk.13.attn_k.weight
Q4_K
Q4_K
[2048, 512]
blk.13.attn_norm.weight
F32
F32
[2048]
blk.13.attn_output.weight
Q4_K
Q4_K
[2048, 2048]
blk.13.attn_q.weight
Q4_K
Q4_K
[2048, 2048]
blk.13.attn_v.weight
Q6_K
Q6_K
[2048, 512]
blk.13.ffn_down.weight
Q6_K
Q6_K
[8192, 2048]
blk.13.ffn_gate.weight
Q4_K
Q4_K
[2048, 8192]
blk.13.ffn_norm.weight
F32
F32
[2048]
blk.13.ffn_up.weight
Q4_K
Q4_K
[2048, 8192]
blk.14
blk.14.attn_k.weight
Q4_K
Q4_K
[2048, 512]
blk.14.attn_norm.weight
F32
F32
[2048]
blk.14.attn_output.weight
Q4_K
Q4_K
[2048, 2048]
blk.14.attn_q.weight
Q4_K
Q4_K
[2048, 2048]
blk.14.attn_v.weight
Q6_K
Q6_K
[2048, 512]
blk.14.ffn_down.weight
Q6_K
Q6_K
[8192, 2048]
blk.14.ffn_gate.weight
Q4_K
Q4_K
[2048, 8192]
blk.14.ffn_norm.weight
F32
F32
[2048]
blk.14.ffn_up.weight
Q4_K
Q4_K
[2048, 8192]
blk.15
blk.15.attn_k.weight
Q4_K
Q4_K
[2048, 512]
blk.15.attn_norm.weight
F32
F32
[2048]
blk.15.attn_output.weight
Q4_K
Q4_K
[2048, 2048]
blk.15.attn_q.weight
Q4_K
Q4_K
[2048, 2048]
blk.15.attn_v.weight
Q6_K
Q6_K
[2048, 512]
blk.15.ffn_down.weight
Q6_K
Q6_K
[8192, 2048]
blk.15.ffn_gate.weight
Q4_K
Q4_K
[2048, 8192]
blk.15.ffn_norm.weight
F32
F32
[2048]
blk.15.ffn_up.weight
Q4_K
Q4_K
[2048, 8192]
rope_freqs.weight
F32
F32
[32]
output_norm.weight
F32
F32
[2048]