435 7 months ago

F1-3B-Series (a.k.a Formosa-1 or F1) is a Traditional Chinese language model fine-tuned for Taiwan-specific tasks with strong instruction-following ability.

tools 3b

7 months ago

7051ec74e0ef · 3.0GB ·

llama
·
3.61B
·
Q6_K
LLAMA 3.2 COMMUNITY LICENSE AGREEMENT Llama 3.2 Version Release Date: September 25, 2024 “Agreemen
{ "num_ctx": 4096, "stop": [ "<|eot_id|>" ], "temperature": 0.5 }
{{- if gt (len .Tools) 0 -}} <|start_header_id|>system<|end_header_id|> {{ if .System }} {{ .System

Readme

Model Card for Llama-3.2-3B-F1-Instruct (a.k.a Formosa-1 or F1)

image/png

Note: The checkpoint for this model will be released soon. Please stay tuned. 🙏

Llama-3.2-3B-F1-Instruct(a.k.a Formosa-1 or F1) 是由 Twinkle AIAPMIC 合作開發,並在國家高速網路與計算中心技術指導之下,針對中華民國台灣語境與任務需求所微調之繁體中文語言模型,涵蓋法律、教育、生活應用等多元場景,並以高指令跟隨能力為目標進行強化。

Model Details

Model Description

Model Sources

Evaluation

Results

下表採用 🌟 Twinkle Eval 評測框架

模型 評測模式 TMMLU+(%) 台灣法律(%) MMLU(%) 測試次數 選項排序
mistralai/Mistral-Small-24B-Instruct-2501 box 56.15 (±0.0172) 37.48 (±0.0098) 74.61 (±0.0154) 3 隨機
meta-llama/Llama-3.2-3B-Instruct box 15.49 (±0.0104) 25.68 (±0.0200) 6.90 (±0.0096) 3 隨機
meta-llama/Llama-3.2-3B-Instruct pattern 35.85 (±0.0174) 32.22 (±0.0023) 59.33 (±0.0168) 3 隨機
MediaTek-Research/Llama-Breeze2-3B-Instruct pattern 40.32 (±0.0181) 38.92 (±0.0193) 55.37 (±0.0180) 3 隨機
twinkle-ai/Llama-3.2-3B-F1-Instruct (ours) box 46.16 (±0.0198) 34.92 (±0.0243) 51.22 (±0.0206) 3 隨機

下表用 lighteval 評測框架

模型 MATH-500 GPQA Diamond
meta-llama/Llama-3.2-3B-Instruct 44.40 27.78
twinkle-ai/Llama-3.2-3B-F1-Instruct (ours) 51.40 33.84

Citation

@misc{twinkleai2025llama3.2f1,
  title        = {Llama-3.2-3B-F1-Instruct: A Traditional Chinese Instruction-Tuned Language Model for Taiwan},
  author       = {Huang, Liang Hsun and Chen, Min Yi and Lin, Wen Bin and Chuang, Chao Chun and Sung, Dave},
  year         = {2025},
  howpublished = {\url{https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Instruct}},
  note         = {Twinkle AI and APMIC. All authors contributed equally.}
}

Acknowledge

  • 特此感謝國家高速網路與計算中心的指導與 APMIC 的算力支援,才得以讓本專案訓利完成。
  • 特此致謝黃啟聖老師、許武龍(哈爸)、臺北市立第一女子高級中學物理科陳姿燁老師、奈視科技 CTO Howard、AIPLUX Technology、郭家嘉老師以及所有在資料集製作過程中提供寶貴協助的夥伴。

Model Card Authors

Twinkle AI

Model Card Contact

Twinkle AI