618 Downloads Updated 6 months ago
base_model: microsoft/Phi-4-mini-instruct
license: mit
license_link: https://huggingface.co/microsoft/Phi-4-mini-instruct/resolve/main/LICENSE
language: - multilingual
pipeline_tag: text-generation
tags: - phi - phi4 - unsloth - nlp - code - microsoft - math - chat - conversational
library_name: transformers
This is Phi-4-mini-instruct with our BUG FIXES.
See our collection for versions of Phi-4 with our bug fixes including GGUF & 4-bit formats.
Unsloth's Phi-4 Dynamic Quants is selectively quantized, greatly improving accuracy over standard 4-bit.
We have a free Google Colab notebook for turning Phi-4 into a reasoning model: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4_(14B)-GRPO.ipynb
All notebooks are beginner friendly! Add your dataset, click “Run All”, and you’ll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
Unsloth supports | Free Notebooks | Performance | Memory use |
---|---|---|---|
GRPO with Phi-4 | ▶️ Start on Colab | 2x faster | 80% less |
Llama-3.2 (3B) | ▶️ Start on Colab | 2.4x faster | 58% less |
Llama-3.2 (11B vision) | ▶️ Start on Colab | 2x faster | 60% less |
Qwen2 VL (7B) | ▶️ Start on Colab | 1.8x faster | 60% less |
Qwen2.5 (7B) | ▶️ Start on Colab | 2x faster | 60% less |
Llama-3.1 (8B) | ▶️ Start on Colab | 2.4x faster | 58% less |
Phi-4 (14B) | ▶️ Start on Colab | 2x faster | 50% less |
Gemma 2 (9B) | ▶️ Start on Colab | 2.4x faster | 58% less |
Mistral (7B) | ▶️ Start on Colab | 2.2x faster | 62% less |
Phi-4-mini-instruct is a lightweight open model built upon synthetic data and filtered publicly available websites - with a focus on high-quality, reasoning dense data. The model belongs to the Phi-4 model family and supports 128K token context length. The model underwent an enhancement process, incorporating both supervised fine-tuning and direct preference optimization to support precise instruction adherence and robust safety measures.
📰 Phi-4-mini Microsoft Blog
📖 Phi-4-mini Technical Report
👩🍳 Phi Cookbook
🏡 Phi Portal
🖥️ Try It Azure, Huggingface
Phi-4: [mini-instruct | onnx]; multimodal-instruct;
The model is intended for broad multilingual commercial and research use. The model provides uses for general purpose AI systems and applications which require:
The model is designed to accelerate research on language and multimodal models, for use as a building block for generative AI powered features.
The model is not specifically designed or evaluated for all downstream purposes. Developers should consider common limitations of language models, as well as performance difference across languages, as they select use cases, and evaluate and mitigate for accuracy, safety, and fairness before using within a specific downstream use case, particularly for high-risk scenarios. Developers should be aware of and adhere to applicable laws or regulations (including but not limited to privacy, trade compliance laws, etc.) that are relevant to their use case.
Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the license the model is released under.
This release of Phi-4-mini-instruct is based on valuable user feedback from the Phi-3 series. The Phi-4-mini model employed new architecture for efficiency, larger vocabulary for multilingual support, and better post-training techniques were used for instruction following, function calling, as well as additional data leading to substantial gains on key capabilities. It is anticipated that most use cases will benefit from this release, but users are encouraged to test in their particular AI applications. The enthusiastic support for the Phi-4 series is greatly appreciated. Feedback on Phi-4-mini-instruct is welcomed and crucial to the model’s evolution and improvement.
To understand the capabilities, the 3.8B parameters Phi-4-mini-instruct model was compared with a set of models over a variety of benchmarks using an internal benchmark platform (See Appendix A for benchmark methodology). A high-level overview of the model quality is as follows:
Benchmark | Similar size | 2x size | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Phi-4 mini-Ins | Phi-3.5-mini-Ins | Llama-3.2-3B-Ins | Mistral-3B | Qwen2.5-3B-Ins | Qwen2.5-7B-Ins | Mistral-8B-2410 | Llama-3.1-8B-Ins | Llama-3.1-Tulu-3-8B | Gemma2-9B-Ins | GPT-4o-mini-2024-07-18 | |
Popular aggregated benchmark | |||||||||||
Arena Hard | 32.8 | 34.4 | 17.0 | 26.9 | 32.0 | 55.5 | 37.3 | 25.7 | 42.7 | 43.7 | 53.7 |
BigBench Hard (0-shot, CoT) | 70.4 | 63.1 | 55.4 | 51.2 | 56.2 | 72.4 | 53.3 | 63.4 | 55.5 | 65.7 | 80.4 |
MMLU (5-shot) | 67.3 | 65.5 | 61.8 | 60.8 | 65.0 | 72.6 | 63.0 | 68.1 | 65.0 | 71.3 | 77.2 |
MMLU-Pro (0-shot, CoT) | 52.8 | 47.4 | 39.2 | 35.3 | 44.7 | 56.2 | 36.6 | 44.0 | 40.9 | 50.1 | 62.8 |
Reasoning | |||||||||||
ARC Challenge (10-shot) | 83.7 | 84.6 | 76.1 | 80.3 | 82.6 | 90.1 | 82.7 | 83.1 | 79.4 | 89.8 | 93.5 |
BoolQ (2-shot) | 81.2 | 77.7 | 71.4 | 79.4 | 65.4 | 80.0 | 80.5 | 82.8 | 79.3 | 85.7 | 88.7 |
GPQA (0-shot, CoT) | 25.2 | 26.6 | 24.3 | 24.4 | 23.4 | 30.6 | 26.3 | 26.3 | 29.9 | 39.1 | 41.1 |
HellaSwag (5-shot) | 69.1 | 72.2 | 77.2 | 74.6 | 74.6 | 80.0 | 73.5 | 72.8 | 80.9 | 87.1 | 88.7 |
OpenBookQA (10-shot) | 79.2 | 81.2 | 72.6 | 79.8 | 79.3 | 82.6 | 80.2 | 84.8 | 79.8 | 90.0 | 90.0 |
PIQA (5-shot) | 77.6 | 78.2 | 68.2 | 73.2 | 72.6 | 76.2 | 81.2 | 83.2 | 78.3 | 83.7 | 88.7 |
Social IQA (5-shot) | 72.5 | 75.1 | 68.3 | 73.9 | 75.3 | 75.3 | 77.6 | 71.8 | 73.4 | 74.7 | 82.9 |
TruthfulQA (MC2) (10-shot) | 66.4 | 65.2 | 59.2 | 62.9 | 64.3 | 69.4 | 63.0 | 69.2 | 64.1 | 76.6 | 78.2 |
Winogrande (5-shot) | 67.0 | 72.2 | 53.2 | 59.8 | 63.3 | 71.1 | 63.1 | 64.7 | 65.4 | 74.0 | 76.9 |
Multilingual | |||||||||||
Multilingual MMLU (5-shot) | 49.3 | 51.8 | 48.1 | 46.4 | 55.9 | 64.4 | 53.7 | 56.2 | 54.5 | 63.8 | 72.9 |
MGSM (0-shot, CoT) | 63.9 | 49.6 | 44.6 | 44.6 | 53.5 | 64.5 | 56.7 | 56.7 | 58.6 | 75.1 | 81.7 |
Math | |||||||||||
GSM8K (8-shot, CoT) | 88.6 | 76.9 | 75.6 | 80.1 | 80.6 | 88.7 | 81.9 | 82.4 | 84.3 | 84.9 | 91.3 |
MATH (0-shot, CoT) | 64.0 | 49.8 | 46.7 | 41.8 | 61.7 | 60.4 | 41.6 | 47.6 | 46.1 | 51.3 | 70.2 |
Overall | 63.5 | 60.5 | 56.2 | 56.9 | 60.1 | 67.9 | 60.2 | 62.3 | 60.9 | 65.0 | 75.5 |
Overall, the model with only 3.8B-param achieves a similar level of multilingual language understanding and reasoning ability as much larger models. However, it is still fundamentally limited by its size for certain tasks. The model simply does not have the capacity to store too much factual knowledge, therefore, users may experience factual incorrectness. However, it may be possible to resolve such weakness by augmenting Phi-4 with a search engine, particularly when using the model under RAG settings.
Phi-4-mini-instruct supports a vocabulary size of up to 200064
tokens. The tokenizer files already provide placeholder tokens that can be used for downstream fine-tuning, but they can also be extended up to the model’s vocabulary size.
Given the nature of the training data, the Phi-4-mini-instruct model is best suited for prompts using specific formats. Below are the two primary formats:
This format is used for general conversation and instructions:
<|system|>Insert System Message<|end|><|user|>Insert User Message<|end|><|assistant|>
This format is used when the user wants the model to provide function calls based on the given tools. The user should provide the available tools in the system prompt, wrapped by <|tool|> and <|/tool|> tokens. The tools should be specified in JSON format, using a JSON dump structure. Example:
<|system|>You are a helpful assistant with some tools.<|tool|>[{"name": "get_weather_updates", "description": "Fetches weather updates for a given city using the RapidAPI Weather API.", "parameters": {"city": {"description": "The name of the city for which to retrieve weather information.", "type": "str", "default": "London"}}}]<|/tool|><|end|><|user|>What is the weather like in Paris today?<|end|><|assistant|>
List of required packages:
flash_attn==2.7.4.post1
torch==2.6.0
vllm>=0.7.2
To perform inference using vLLM, you can use the following code snippet:
from vllm import LLM, SamplingParams
llm = LLM(model="microsoft/Phi-4-mini-instruct", trust_remote_code=True)
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
]
sampling_params = SamplingParams(
max_tokens=500,
temperature=0.0,
)
output = llm.chat(messages=messages, sampling_params=sampling_params)
print(output[0].outputs[0].text)
Phi-4 family has been integrated in the 4.49.0
version of transformers
. The current transformers
version can be verified with: pip list | grep transformers
.
List of required packages:
flash_attn==2.7.4.post1
torch==2.6.0
transformers==4.49.0
accelerate==1.3.0
Phi-4-mini-instruct is also available in Azure AI Studio
After obtaining the Phi-4-mini-instruct model checkpoints, users can use this sample code for inference.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
torch.random.manual_seed(0)
model_path = "microsoft/Phi-4-mini-instruct"
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_path)
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
]
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
generation_args = {
"max_new_tokens": 500,
"return_full_text": False,
"temperature": 0.0,
"do_sample": False,
}
output = pipe(messages, **generation_args)
print(output[0]['generated_text'])
Like other language models, the Phi family of models can potentially behave in ways that are unfair, unreliable, or offensive. Some of the limiting behaviors to be aware of include:
Developers should apply responsible AI best practices, including mapping, measuring, and mitigating risks associated with their specific use case and cultural, linguistic context. Phi 4 family of models are general purpose models. As developers plan to deploy these models for specific use cases, they are encouraged to fine-tune the models for their use case and leverage the models as part of broader AI systems with language-specific safeguards in place. Important areas for consideration include:
Phi-4-mini’s training data includes a wide variety of sources, totaling 5 trillion tokens, and is a combination of 1) publicly available documents filtered for quality, selected high-quality educational data, and code 2) newly created synthetic, “textbook-like” data for the purpose of teaching math, coding, common sense reasoning, general knowledge of the world (e.g., science, daily activities, theory of mind, etc.) 3) high quality chat format supervised data covering various topics to reflect human preferences on different aspects such as instruct-following, truthfulness, honesty and helpfulness. Focus was placed on the quality of data that could potentially improve the reasoning ability for the model, and the publicly available documents were filtered to contain a preferred level of knowledge. As an example, the result of a game in premier league on a particular day might be good training data for frontier models, but such information was removed to leave more model capacity for reasoning for the model’s small size. More details about data can be found in the Phi-4-mini-instruct technical report.
The decontamination process involved normalizing and tokenizing the dataset, then generating and comparing n-grams between the target dataset and benchmark datasets. Samples with matching n-grams above a threshold were flagged as contaminated and removed from the dataset. A detailed contamination report was generated, summarizing the matched text, matching ratio, and filtered results for further analysis.
A basic example of multi-GPUs supervised fine-tuning (SFT) with TRL and Accelerate modules is provided here.
Various evaluation techniques including red teaming, adversarial conversation simulations, and multilingual safety evaluation benchmark datasets were leveraged to evaluate Phi-4 models’ propensity to produce undesirable outputs across multiple languages and risk categories. Several approaches were used to compensate for the limitations of one approach alone. Findings across the various evaluation methods indicate that safety post-training that was done as detailed in the Phi 3 Safety Post-Training paper had a positive impact across multiple languages and risk categories as observed by refusal rates (refusal to output undesirable outputs) and robustness to jailbreak techniques. Details on prior red team evaluations across Phi models can be found in the Phi 3 Safety Post-Training paper. For this release, the red team tested the model in English, Chinese, Japanese, Spanish, Portuguese, Arabic, Thai, and Russian for the following potential harms: Hate Speech and Bias, Violent Crimes, Specialized Advice, and Election Information. Their findings indicate that the model is resistant to jailbreak techniques across languages, but that language-specific attack prompts leveraging cultural context can cause the model to output harmful content. Another insight was that with function calling scenarios, the model could sometimes hallucinate function names or URL’s. The model may also be more susceptible to longer multi-turn jailbreak techniques across both English and non-English languages. These findings highlight the need for industry-wide investment in the development of high-quality safety evaluation datasets across multiple languages, including low resource languages, and risk areas that account for cultural nuances where those languages are spoken.
Note that by default, the Phi-4-mini-instruct model uses flash attention, which requires certain types of GPU hardware to run. We have tested on the following GPU types: * NVIDIA A100 * NVIDIA A6000 * NVIDIA H100
If you want to run the model on: * NVIDIA V100 or earlier generation GPUs: call AutoModelForCausalLM.from_pretrained() with attn_implementation=“eager”
The model is licensed under the MIT license.
This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft’s Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party’s policies.
We include a brief word on methodology here - and in particular, how we think about optimizing prompts. In an ideal world, we would never change any prompts in our benchmarks to ensure it is always an apples-to-apples comparison when comparing different models. Indeed, this is our default approach, and is the case in the vast majority of models we have run to date. There are, however, some exceptions to this. In some cases, we see a model that performs worse than expected on a given eval due to a failure to respect the output format. For example:
However, we do not:
The model was evaluated across a breadth of public and internal benchmarks to understand the model’s capabilities under multiple tasks and conditions. While most evaluations use English, the leading multilingual benchmark was incorporated that covers performance in select languages. More specifically,