AeroCorp/
afm:q6_k

49 2 months ago

The African Foundation Model (AFM) is a state-of-the-art language model specifically designed for African contexts, languages, and use cases. Built with the latest transformer optimizations from 2025 research. AFM combines power with efficiency.

tools
63f844e218e8 · 186MB
    Metadata
  • general.architecture
    llama
  • general.file_type
    Q6_K
  • llama.attention.head_count
    8
  • llama.attention.head_count_kv
    4
  • llama.attention.layer_norm_rms_epsilon
    1e-05
  • llama.block_count
    12
  • llama.context_length
    256
  • llama.embedding_length
    512
  • llama.feed_forward_length
    3072
  • llama.rope.freq_base
    10000
  • llama.vocab_size
    50000
  • tokenizer.ggml.bos_token_id
    1
  • tokenizer.ggml.eos_token_id
    2
  • tokenizer.ggml.model
    gpt2
  • tokenizer.ggml.padding_token_id
    0
  • Tensor
  • blocks.0.attention.k_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.0.attention.kv_down_proj.weight
    Q6_K
    [512, 128]
  • blocks.0.attention.o_proj.weight
    Q6_K
    [512, 512]
  • blocks.0.attention.q_proj.weight
    Q6_K
    [512, 512]
  • blocks.0.attention.v_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.0.ffn.expert_bias
    F16
    [4]
  • blocks.0.ffn.experts.0.w1.weight
    Q6_K
    [512, 2048]
  • blocks.0.ffn.experts.0.w2.weight
    Q6_K
    [2048, 512]
  • blocks.0.ffn.experts.0.w3.weight
    Q6_K
    [512, 2048]
  • blocks.0.ffn.experts.1.w1.weight
    Q6_K
    [512, 2048]
  • blocks.0.ffn.experts.1.w2.weight
    Q6_K
    [2048, 512]
  • blocks.0.ffn.experts.1.w3.weight
    Q6_K
    [512, 2048]
  • blocks.0.ffn.experts.2.w1.weight
    Q6_K
    [512, 2048]
  • blocks.0.ffn.experts.2.w2.weight
    Q6_K
    [2048, 512]
  • blocks.0.ffn.experts.2.w3.weight
    Q6_K
    [512, 2048]
  • blocks.0.ffn.experts.3.w1.weight
    Q6_K
    [512, 2048]
  • blocks.0.ffn.experts.3.w2.weight
    Q6_K
    [2048, 512]
  • blocks.0.ffn.experts.3.w3.weight
    Q6_K
    [512, 2048]
  • blocks.0.ffn.gate.weight
    Q6_K
    [512, 4]
  • blocks.0.ffn.shared_expert.w1.weight
    Q6_K
    [512, 2048]
  • blocks.0.ffn.shared_expert.w2.weight
    Q6_K
    [2048, 512]
  • blocks.0.ffn.shared_expert.w3.weight
    Q6_K
    [512, 2048]
  • blocks.0.norm1.weight
    F16
    [512]
  • blocks.0.norm2.weight
    F16
    [512]
  • blocks.1.attention.k_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.1.attention.kv_down_proj.weight
    Q6_K
    [512, 128]
  • blocks.1.attention.o_proj.weight
    Q6_K
    [512, 512]
  • blocks.1.attention.q_proj.weight
    Q6_K
    [512, 512]
  • blocks.1.attention.v_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.1.ffn.w1.weight
    Q6_K
    [512, 2048]
  • blocks.1.ffn.w2.weight
    Q6_K
    [2048, 512]
  • blocks.1.ffn.w3.weight
    Q6_K
    [512, 2048]
  • blocks.1.norm1.weight
    F16
    [512]
  • blocks.1.norm2.weight
    F16
    [512]
  • blocks.2.attention.k_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.2.attention.kv_down_proj.weight
    Q6_K
    [512, 128]
  • blocks.2.attention.o_proj.weight
    Q6_K
    [512, 512]
  • blocks.2.attention.q_proj.weight
    Q6_K
    [512, 512]
  • blocks.2.attention.v_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.2.ffn.w1.weight
    Q6_K
    [512, 2048]
  • blocks.2.ffn.w2.weight
    Q6_K
    [2048, 512]
  • blocks.2.ffn.w3.weight
    Q6_K
    [512, 2048]
  • blocks.2.norm1.weight
    F16
    [512]
  • blocks.2.norm2.weight
    F16
    [512]
  • blocks.3.attention.k_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.3.attention.kv_down_proj.weight
    Q6_K
    [512, 128]
  • blocks.3.attention.o_proj.weight
    Q6_K
    [512, 512]
  • blocks.3.attention.q_proj.weight
    Q6_K
    [512, 512]
  • blocks.3.attention.v_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.3.ffn.expert_bias
    F16
    [4]
  • blocks.3.ffn.experts.0.w1.weight
    Q6_K
    [512, 2048]
  • blocks.3.ffn.experts.0.w2.weight
    Q6_K
    [2048, 512]
  • blocks.3.ffn.experts.0.w3.weight
    Q6_K
    [512, 2048]
  • blocks.3.ffn.experts.1.w1.weight
    Q6_K
    [512, 2048]
  • blocks.3.ffn.experts.1.w2.weight
    Q6_K
    [2048, 512]
  • blocks.3.ffn.experts.1.w3.weight
    Q6_K
    [512, 2048]
  • blocks.3.ffn.experts.2.w1.weight
    Q6_K
    [512, 2048]
  • blocks.3.ffn.experts.2.w2.weight
    Q6_K
    [2048, 512]
  • blocks.3.ffn.experts.2.w3.weight
    Q6_K
    [512, 2048]
  • blocks.3.ffn.experts.3.w1.weight
    Q6_K
    [512, 2048]
  • blocks.3.ffn.experts.3.w2.weight
    Q6_K
    [2048, 512]
  • blocks.3.ffn.experts.3.w3.weight
    Q6_K
    [512, 2048]
  • blocks.3.ffn.gate.weight
    Q6_K
    [512, 4]
  • blocks.3.ffn.shared_expert.w1.weight
    Q6_K
    [512, 2048]
  • blocks.3.ffn.shared_expert.w2.weight
    Q6_K
    [2048, 512]
  • blocks.3.ffn.shared_expert.w3.weight
    Q6_K
    [512, 2048]
  • blocks.3.norm1.weight
    F16
    [512]
  • blocks.3.norm2.weight
    F16
    [512]
  • blocks.4.attention.k_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.4.attention.kv_down_proj.weight
    Q6_K
    [512, 128]
  • blocks.4.attention.o_proj.weight
    Q6_K
    [512, 512]
  • blocks.4.attention.q_proj.weight
    Q6_K
    [512, 512]
  • blocks.4.attention.v_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.4.ffn.w1.weight
    Q6_K
    [512, 2048]
  • blocks.4.ffn.w2.weight
    Q6_K
    [2048, 512]
  • blocks.4.ffn.w3.weight
    Q6_K
    [512, 2048]
  • blocks.4.norm1.weight
    F16
    [512]
  • blocks.4.norm2.weight
    F16
    [512]
  • blocks.5.attention.k_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.5.attention.kv_down_proj.weight
    Q6_K
    [512, 128]
  • blocks.5.attention.o_proj.weight
    Q6_K
    [512, 512]
  • blocks.5.attention.q_proj.weight
    Q6_K
    [512, 512]
  • blocks.5.attention.v_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.5.ffn.w1.weight
    Q6_K
    [512, 2048]
  • blocks.5.ffn.w2.weight
    Q6_K
    [2048, 512]
  • blocks.5.ffn.w3.weight
    Q6_K
    [512, 2048]
  • blocks.5.norm1.weight
    F16
    [512]
  • blocks.5.norm2.weight
    F16
    [512]
  • blocks.6.attention.k_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.6.attention.kv_down_proj.weight
    Q6_K
    [512, 128]
  • blocks.6.attention.o_proj.weight
    Q6_K
    [512, 512]
  • blocks.6.attention.q_proj.weight
    Q6_K
    [512, 512]
  • blocks.6.attention.v_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.6.ffn.expert_bias
    F16
    [4]
  • blocks.6.ffn.experts.0.w1.weight
    Q6_K
    [512, 2048]
  • blocks.6.ffn.experts.0.w2.weight
    Q6_K
    [2048, 512]
  • blocks.6.ffn.experts.0.w3.weight
    Q6_K
    [512, 2048]
  • blocks.6.ffn.experts.1.w1.weight
    Q6_K
    [512, 2048]
  • blocks.6.ffn.experts.1.w2.weight
    Q6_K
    [2048, 512]
  • blocks.6.ffn.experts.1.w3.weight
    Q6_K
    [512, 2048]
  • blocks.6.ffn.experts.2.w1.weight
    Q6_K
    [512, 2048]
  • blocks.6.ffn.experts.2.w2.weight
    Q6_K
    [2048, 512]
  • blocks.6.ffn.experts.2.w3.weight
    Q6_K
    [512, 2048]
  • blocks.6.ffn.experts.3.w1.weight
    Q6_K
    [512, 2048]
  • blocks.6.ffn.experts.3.w2.weight
    Q6_K
    [2048, 512]
  • blocks.6.ffn.experts.3.w3.weight
    Q6_K
    [512, 2048]
  • blocks.6.ffn.gate.weight
    Q6_K
    [512, 4]
  • blocks.6.ffn.shared_expert.w1.weight
    Q6_K
    [512, 2048]
  • blocks.6.ffn.shared_expert.w2.weight
    Q6_K
    [2048, 512]
  • blocks.6.ffn.shared_expert.w3.weight
    Q6_K
    [512, 2048]
  • blocks.6.norm1.weight
    F16
    [512]
  • blocks.6.norm2.weight
    F16
    [512]
  • blocks.7.attention.k_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.7.attention.kv_down_proj.weight
    Q6_K
    [512, 128]
  • blocks.7.attention.o_proj.weight
    Q6_K
    [512, 512]
  • blocks.7.attention.q_proj.weight
    Q6_K
    [512, 512]
  • blocks.7.attention.v_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.7.ffn.w1.weight
    Q6_K
    [512, 2048]
  • blocks.7.ffn.w2.weight
    Q6_K
    [2048, 512]
  • blocks.7.ffn.w3.weight
    Q6_K
    [512, 2048]
  • blocks.7.norm1.weight
    F16
    [512]
  • blocks.7.norm2.weight
    F16
    [512]
  • blocks.8.attention.k_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.8.attention.kv_down_proj.weight
    Q6_K
    [512, 128]
  • blocks.8.attention.o_proj.weight
    Q6_K
    [512, 512]
  • blocks.8.attention.q_proj.weight
    Q6_K
    [512, 512]
  • blocks.8.attention.v_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.8.ffn.w1.weight
    Q6_K
    [512, 2048]
  • blocks.8.ffn.w2.weight
    Q6_K
    [2048, 512]
  • blocks.8.ffn.w3.weight
    Q6_K
    [512, 2048]
  • blocks.8.norm1.weight
    F16
    [512]
  • blocks.8.norm2.weight
    F16
    [512]
  • blocks.9.attention.k_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.9.attention.kv_down_proj.weight
    Q6_K
    [512, 128]
  • blocks.9.attention.o_proj.weight
    Q6_K
    [512, 512]
  • blocks.9.attention.q_proj.weight
    Q6_K
    [512, 512]
  • blocks.9.attention.v_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.9.ffn.expert_bias
    F16
    [4]
  • blocks.9.ffn.experts.0.w1.weight
    Q6_K
    [512, 2048]
  • blocks.9.ffn.experts.0.w2.weight
    Q6_K
    [2048, 512]
  • blocks.9.ffn.experts.0.w3.weight
    Q6_K
    [512, 2048]
  • blocks.9.ffn.experts.1.w1.weight
    Q6_K
    [512, 2048]
  • blocks.9.ffn.experts.1.w2.weight
    Q6_K
    [2048, 512]
  • blocks.9.ffn.experts.1.w3.weight
    Q6_K
    [512, 2048]
  • blocks.9.ffn.experts.2.w1.weight
    Q6_K
    [512, 2048]
  • blocks.9.ffn.experts.2.w2.weight
    Q6_K
    [2048, 512]
  • blocks.9.ffn.experts.2.w3.weight
    Q6_K
    [512, 2048]
  • blocks.9.ffn.experts.3.w1.weight
    Q6_K
    [512, 2048]
  • blocks.9.ffn.experts.3.w2.weight
    Q6_K
    [2048, 512]
  • blocks.9.ffn.experts.3.w3.weight
    Q6_K
    [512, 2048]
  • blocks.9.ffn.gate.weight
    Q6_K
    [512, 4]
  • blocks.9.ffn.shared_expert.w1.weight
    Q6_K
    [512, 2048]
  • blocks.9.ffn.shared_expert.w2.weight
    Q6_K
    [2048, 512]
  • blocks.9.ffn.shared_expert.w3.weight
    Q6_K
    [512, 2048]
  • blocks.9.norm1.weight
    F16
    [512]
  • blocks.9.norm2.weight
    F16
    [512]
  • blocks.10.attention.k_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.10.attention.kv_down_proj.weight
    Q6_K
    [512, 128]
  • blocks.10.attention.o_proj.weight
    Q6_K
    [512, 512]
  • blocks.10.attention.q_proj.weight
    Q6_K
    [512, 512]
  • blocks.10.attention.v_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.10.ffn.w1.weight
    Q6_K
    [512, 2048]
  • blocks.10.ffn.w2.weight
    Q6_K
    [2048, 512]
  • blocks.10.ffn.w3.weight
    Q6_K
    [512, 2048]
  • blocks.10.norm1.weight
    F16
    [512]
  • blocks.10.norm2.weight
    F16
    [512]
  • blocks.11.attention.k_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.11.attention.kv_down_proj.weight
    Q6_K
    [512, 128]
  • blocks.11.attention.o_proj.weight
    Q6_K
    [512, 512]
  • blocks.11.attention.q_proj.weight
    Q6_K
    [512, 512]
  • blocks.11.attention.v_up_proj.weight
    Q8_0
    [128, 512]
  • blocks.11.ffn.w1.weight
    Q6_K
    [512, 2048]
  • blocks.11.ffn.w2.weight
    Q6_K
    [2048, 512]
  • blocks.11.ffn.w3.weight
    Q6_K
    [512, 2048]
  • blocks.11.norm1.weight
    F16
    [512]
  • blocks.11.norm2.weight
    F16
    [512]
  • final_norm.weight
    F16
    [512]
  • mtp_head.position_transforms.0.0.bias
    F16
    [512]
  • mtp_head.position_transforms.0.0.weight
    Q6_K
    [512, 512]
  • mtp_head.position_transforms.0.2.bias
    F16
    [512]
  • mtp_head.position_transforms.0.2.weight
    F16
    [512]
  • mtp_head.position_transforms.1.0.bias
    F16
    [512]
  • mtp_head.position_transforms.1.0.weight
    Q6_K
    [512, 512]
  • mtp_head.position_transforms.1.2.bias
    F16
    [512]
  • mtp_head.position_transforms.1.2.weight
    F16
    [512]
  • mtp_head.position_transforms.2.0.bias
    F16
    [512]
  • mtp_head.position_transforms.2.0.weight
    Q6_K
    [512, 512]
  • mtp_head.position_transforms.2.2.bias
    F16
    [512]
  • mtp_head.position_transforms.2.2.weight
    F16
    [512]
  • mtp_head.position_transforms.3.0.bias
    F16
    [512]
  • mtp_head.position_transforms.3.0.weight
    Q6_K
    [512, 512]
  • mtp_head.position_transforms.3.2.bias
    F16
    [512]
  • mtp_head.position_transforms.3.2.weight
    F16
    [512]
  • mtp_head.prediction_heads.0.weight
    Q6_K
    [512, 50000]
  • mtp_head.prediction_heads.1.weight
    Q6_K
    [512, 50000]
  • mtp_head.prediction_heads.2.weight
    Q6_K
    [512, 50000]
  • mtp_head.prediction_heads.3.weight
    Q6_K
    [512, 50000]
  • token_embedding.weight
    Q6_K
    [512, 50000]